Xét tứ giác NMCK có
NM//CK
NM=CK
Do đó: NMCK là hình bình hành
Suy ra: NM=CK(1)
Xét ΔABC có
MN//BC
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}=\dfrac{1}{2}\)
=>MN=1/2BC(2)
Từ (1) và (2) suy ra \(CK=\dfrac{1}{2}BC\)
hay K là trung điểm của BC
Xét tứ giác NMCK có
NM//CK
NM=CK
Do đó: NMCK là hình bình hành
Suy ra: NM=CK(1)
Xét ΔABC có
MN//BC
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}=\dfrac{1}{2}\)
=>MN=1/2BC(2)
Từ (1) và (2) suy ra \(CK=\dfrac{1}{2}BC\)
hay K là trung điểm của BC
cho tam giác ABC,M là trung điểm của AC,kẻ MN // CB(N thuộc AB),trên CB lấy điểm K sao cho CK=MN.
a,chứng minh:tam giác ANM=tam giác MKC
b,chững minh AB // MK
c,chứng minh BK=KC
Cho tam giác ABC , M là trung điểm của AC. Kẻ MN song song với CB (N thuộc AB) , trên CB lấy điểm K sao cho CK=MN
a) CM: tam giác ANM=tam giác MKC
b) CM: AB song song MK
c) CM: BK=KC
Cho Tam giác ABC , M là trung điểm của AC . Kẻ MN // CB ( N \(\in\) AB ) , trên CB lấy điểm K sao cho CK = MN
a) Chứng minh : Tam giác AMN = TAM GIÁC MKC
b) ; AB // MK
C) : BK = KC
Cho tam giác ABC ( CA < CB) trên BC lấy các điểm M và N sao cho BM =MN=NC. Qua điểm M kể dường thẳng song song với AB cắt AN tại I
a) Chứng minh rằng : I là trung điểm AN
b) Qua K là trung điểm AB kẻ đường thẳng vuông góc với phân giác góc ACB cắt đường thẳng AC tại E cắt BC tại F. Chứng minh AE = BF
Cho tam giác ABC ( CA < CB) trên BC lấy các điểm M và N sao cho BM =MN=NC. Qua điểm M kể dường thẳng song song với AB cắt AN tại I
a) Chứng minh rằng : I là trung điểm AN
b) Qua K là trung điểm AB kẻ đường thẳng vuông góc với phân giác góc ACB cắt đường thẳng AC tại E cắt BC tại F. Chứng minh AE = BF
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE = BD . Các đường thẳng vuông góc với BC kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a) CMR: BM = CN.
b) Gọi I là giao điểm của MN với BC, đường thẳng vuông góc với MN tại I cắt đường thẳng AH tại K (H là trung điểm của BC). Chứng minh tam giác KMN cân.
c) CMR: CK vuông góc với AN.
Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh BC<MN
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH vuông góc với AM ( H thuộc AM ). Kẻ CK vuông góc với AN ( K thuộc AN ). Chứng minh rằng BH = CK
c) chứng minh MN = HK và MN // HK
Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB
a)Chứng minh AD=CB
b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ
Bài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K thuộc CN) .Kẻ đường thẳng d đi qua C cắt Ix tại E và cắt KI tại F . Chứng minh ME//MF
Bài 3 :Cho tam giác ABC ( góc A < 90 độ ) . TẠi A kẻ Ã vuông góc với AC , M thuộc Ax sao cho AM=AC . M,B thuộc 2 nửa mặt phẳng đối nhau bờ AC . Tại A kẻ Ay vuông góc với AB , n thuộc Ay sao cho AN = AB ( N,C thuộc 2 nửa mặt phẳng đối nhau bờ AB )
a) chứng minh tam giác ABM = tam giác ANC
b) BM=CN
c) Bm vuông góc với CN
BÀI 4 Tam giác ABC , M là trung điểm của AB , N là trung điểm của AC . Trên tia đối của tia MN lấy điểm P sao cho NP = MN
a) tam giác AMN = tam giác CPN
b) CP = BM
c) MN//BC
d) nhận sét gì về MN so với BC
BÀi 5 cho tam giác ABC . từ C kẻ CX // với AB . Trên cạnh Ab lấy điểm M . Trên tia Cx lấy điểm N sao cho AM=CN. Nối MN cắt AC tại D
a) chứng minh OA=OC , OM =ON
b) Nối BO tia BO cắt Cx tại P . Chứng minh AB = CD
Các bạn giải được bài nào thì giải bài đấy cho mình nhé , mình cần gấp lắm rùi . Thank nha