Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC và điểm M nắm trong tam giác. Chứng minh rằng: MA + MB + MC + min{MA,MB,MC} < BC + CA + AB .
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB
a. Hỏi tam giác MBD là tam giác gì?
b. So sánh hai tam giác BDA và BMC
c. Chứng minh rằng MA =MB + MC
d. CMR \(\frac{1}{MN}=\frac{1}{MB}+\frac{1}{MC}\)( N là giao điểm của AM và BC )
Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính R. Gọi M là 1 điểm bất kì thuộc BC
a) CMR MA=MB+MC
b) Gọi D là giao điểm của MA là BC. cmr: \(\frac{MD}{MB} +\frac{MD}{MC}=1\)
c) tính \(MA^2+MB^2+MC^2theoR\)
Cho tam giác nội tiếp đường trong (O) và M là một điểm trên cung nhỏ BC. Trên đoạn MA lấy điểm D sao cho MD=MB
a) Hỏi tam giác MDB là tam giác gì
b) so sánh hai tam giác BDA và BMC
c) Chứng minh MA=MB+MC
d) tìm vị trí của M để MA + MB +MC lớn nhất
Cho tam giác ABC cân tại A nội tiếp (O; R). M là điểm chuyển động trên cung BC không chứa A. D là giao điểm của MA và BC.
a) Chứng minh tam giác MBD đồng dạng tam giác MAC
b) MB+MC/MA = BC/AB
c) Xác định vị trí của M để MA+MB+MC lớn nhất
Cho tam giác ABC cân tại A nội tiếp (O,R). M là điểm di động trên cung nhỏ BC . D là giao điểm của AM và BC.
a, Chứng minh tam giác MBD đồng dạng với tam giác MAC
b, (MB+MC)/MA=BC/AB
c, Xác định vị trí của M để MA+MB+MC đạt giá trị lớn nhất
cho tam giác đều ABC nội tiếp đường tròn tâm O và M là 1 điểm trên cung nhỏ BC. Trên MA lấy điểm D sao cho MD=MB.
a) tính diện tích 2 tam giác BDA vá BMC
b) CMR : MA = MB + MC
Cho tam giác ABC vuông tại A cố định, có AB=3, AC=4. Một điểm M bất kì nằm trong mặt phẳng chứa tam giác ABC. GTNN của \(\sqrt{2}.MA+MB+MC\) cho mình biết cách làm luôn nha
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB. Chứng minh rằng MA =MB + MC