Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC cân tại A láy điểm M bất kỳ trên cạnh AB qua M kẻ đường thẳng song song với BC cắt AC tại N qua trung điểm I của NC kẻ đường thẳng song song với AB cắt MN ở E cắt BC ở F chứng minh rằng
A)Tứ giác BMNC là hình thang cân
B)So sánh NE và CF
C)tứ giác NECF là hình chữ nhật
Cho tam giác ABC đều và 1 điểm I nằm trong tam giác. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC ở E.Qua I kẻ đường thẳng song song với AC cắt AB ở M, cắt BC ở N. Qua I kẻ đường thẳng song song với AB, cắt AC ở P, cắt BC ở Q.
a) Có bao nhiêu hình thang cân.
b) Biết IA = m, IB = n, IC = p. Tính chu vi tam giác ANP ( Chỉ cần câu này thôi )
Cho Tam giác nhọn ABC.Gọi M là trung điểm của AB. Từ M kết đường thẳng song song với BC và cắt AC tại N, từ N kẻ đường thẳng song song với AB và cắt BC tại ấp a) chứng minh tứ giác BMNP là hình bình hành b) Gọi Q là điểm đối xứng của P qua N. Chứng minh rằng tứ giác AQCP là hình bình hành c)tâm giác ABC cần thêm điều kiện gì để tứ giác AQCP là hình thoi
Cho tam giác nhọn ABC gọi M là trung điểm AB từ M kẻ đường thẳng song song với BC cắt AC tại N. Từ N kẻ đường thẳng song song với AB cắt BC tại P a) CM BMNP là hình bình hành b). Gọi Q là điểm đối xứng của P qua N. Cm AQCP là hình bình hành c). Tam giác ABC cần điều kiện gì để tứ giác AQCP là hình thoi
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.
a) chứng minh tứ giác AQHM là hình thang
b) tứ giác AMBQ là hình gì ? vì sao?
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.
A) chứng minh tứ giác AQHM là hình thang
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K
a. Chứng minh rằng tứ giác AKMN là hình chữ nhật.
b. Điểm E đối xứng với M qua K, Q đối xứng với M qua N. Chứng minh rằng E,A,Q thẳng