Cho tam giác ABC gọi I là trung điểm của BC qua I kẻ đường thẳng d1 cắt AC tại M và cắt AB tại N và đường thẳng d2 cắt AC tại P và cắt AB tại Q đường thẳng PN cắt BC tại E đường thẳng QN cắt BC tại F chứng minh rằng IE=IF
Cho tam giác ABC có(AB<AC) nội tiếp (O) có BC là đường kính, kẻ dây AD vuông góc BC tại I,tia DB cắt tia CA tại E qua E kẻ đường thẳng vuông góc BC tại H, cắt tia AB tại F. chứng minh
a) tam giác abd cân
b)H,E,A,B cùng thuộc một đường tròn
c)tam giác HAF cân
d) B cách đều 3 cạnh tam giác HAD
HELPPPPPPPPPPPP
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giáo ABC, các tiếp điểm trên BC, CA, AB lần lượt là D,E,F. Gọi M là trung điểm của AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của tam giác ABC tại P. Chứng minh tam giác ANP là tam giác cân.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm BC, CA, AB lần lượt là D, E, F. Gọi M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của △ABC tại P.
Chứng minh rằng tam giác APN là tam giác cân
BÀI 4. Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK
cho tam giác ABC. M là điểm nằm trong tam giác . Qua M vẽ đường thẳng // AB cắt AC, BC thứ tự tại E,F. Qua M vẽ đường thẳng // BC cắt AB ,AC theo thứ tự P,Q. Qua M vẽ đường thẳng // với AC cắt AB,BC thứ tự tại I, K. Tính SABC theo S MIP, SMEQ, S MFK
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE