Cho tam giác ABC, H là chân đường cao kẻ từ A ( H thuộc BC), các điểm M,N lần lượt là chân đường vuông góc kẻ từ H lên AB và AC
1-Chứng minh tứ giác AMHN nôị tiếp đường tròn
2- BN và CM cắt đường tròn ngoại tiếp tứ giác AMHN tại E và F. Chứng minh EF song song với BC
3-D là giao điểm của AE và BC. Chứng minh HD.BC=HB.HC
Cho đường tròn (O) có hai đường kính AB, CD không vuông góc với nhau.
a) Chứng minh: tứ giác ACBD là hình chữ nhật.
b) Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC, BD lần lượt tại E, F. Chứng minh: tứ giác ECDF nội tiếp.
c) Từ C và D vẽ các tiếp tuyến với đường tròn (O) cắt EF theo thứ tự tại M và N. Chứng minh: MN=12EF.
d) Gọi I là chân đường vuông góc hạ từ M xuống BN; H là giao điểm của AB và MI. Chứng minh: HA = HO.
Cho tam giác nhọn ABC, AB < AC. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi P là giao điểm của đường thẳng BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S. Chứng minh:
1) Tứ giác BQCR nội tiếp.
2) PB.DC = PC.DB và D là trung điểm của QS.
3) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC
Cho nửa đường tròn tâm O đường kính AB. Điểm H nằm giữa A và B ( H ko trùng với O ). Đường thẳng vuông góc với AB tại H, cắt nửa đường tròn trên tại điểm C. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H đến AC và BC.
a. Tứ giác HDCE là hình gì? Vì sao?
b. Chứng minh ADEB là tứ giác nội tiếp
c. Gọi K là tâm đường tròn ngoại tiếp tứ giác ADEB. Chứng minh KO = 1/2DE
Cho tam giacs ABC nội tiếp đường tròn tâm O đường kính BC.Kẻ AH vuông góc BC tại H.Gọi M,N lần lượt là hình chiếu của H trên AB,AC
a,CM AMHN là hình chữ nhật và AM.AB=AN.AC
b,CM tứ giác BMNC là tứ giác nội tiếp và AC.BM+AB.CN=AH.BC
c,Chứng minh đường thẳng đi qua A cắt HM tại E cắt tia đối NH tại F>Chứng minh BE song song CF
Cho tam giác ABC, vẽ đường tròn (O) đường kinh BC cắt AB tại M và cắt AC tại N. BN cắt CM tại H a) Chứng minh tứ giác AMHN nội tiếp được một đường tròn, b) Chứng minh HMBC = HB MN c) Kẻ AH cắt BC tại K, Chứng minh H là tâm đường tròn nội tiếp tam giác KMN
Cho tam giacs ABC nội tiếp đường tròn tâm O đường kính BC.Kẻ AH vuông góc BC tại H.Gọi M,N lần lượt là hình chiếu của H trên AB,AC
a,CM AMHN là hình chữ nhật và AM.AB=AN.AC
b,CM tứ giác BMNC là tứ giác nội tiếp và AC.BM+AB.CN=AH.BC
c,Chứng minh đường thẳng đi qua A cắt HM tại E cắt tia đối NH tại F>Chứng minh BE song song CF
AI GIÚP CÂU CÚI VỚI KHÓ QUÁ
cho tam giác ABC có ba góc nhọn .Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và D. gọi giao điểm của CE và BD là H
a) chứng minh tứ giác AEHD nội tiếp
b) kẻ AF vuông góc với BC tại F. Chứng minh A, H, F thẳng hàng
c) đường thẳng EF cắt đường tròn tại điểm thứ 2 là K. chứng minh DK// AF
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.