Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê minh phương

Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AC và AB. Trên tia đối của các tia MB và NC lần lượt lấy các điểm D và E sao cho MD = MB và NE = NC. Chứng minh rằng:
a) AMD =CMB, ANE =BNC b) AD // BC; AD = AE
c) Ba điểm A; E; D thẳng hàng.

duong1 tran
12 tháng 10 2021 lúc 13:33

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

Lấp La Lấp Lánh
12 tháng 10 2021 lúc 13:36

a) Xét tam giác AMD và tam giác CMB có:

AM=MC(M là trung điểm AC)

\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)

MD=MB(gt)

=> ΔAMD=ΔCMB(c.g.c)

Xét tam giác ANE và tam giác BNC có:

AN=NB(N là trung điểm AB)

\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)

NE=NC(gt)

=> ΔANE=ΔBNC(c.g.c)

b) Ta có: ΔAMD=ΔCMB(cmt)

=> \(\widehat{MAD}=\widehat{MCB}\)Mà 2 này so le trong=> AD//BCTa có: ΔAMD=ΔCMB, ΔANE=ΔBNC=> AD=AE=BCc) Ta có: ΔANE=ΔBNC(cmt)\(\Rightarrow\widehat{NAE}=\widehat{NBC}\)Mà 2 góc này so le trong=> AE//BCMà AD//BC=> A,E,D thẳng hàng (tiên đề Ơ-clit) 

Các câu hỏi tương tự
phuongtran
Xem chi tiết
phuongtran
Xem chi tiết
Kim Ji Min
Xem chi tiết
Trà sữa 09H
Xem chi tiết
Hirasagi Toriki
Xem chi tiết
Võ Thành Nam
Xem chi tiết
Đặng Khánh Linh
Xem chi tiết
nguyễn quang khải
Xem chi tiết
Trần Quang Huy
Xem chi tiết