Cho tam giác ABC vuông tại A có cạnh AB<AC, cho góc C = \(\alpha\)< 45 độ. Vẽ đường trung tuyến AM và đường cao AH của tam giác ABC.
a) sin2\(\alpha\)= cos\(\alpha\)
b) 1+ cos2\(\alpha\)= 2\(\cos^2\alpha\)
c) 1- \(\cos2\alpha\)= 2\(\sin^2\alpha\)
Chứng minh đẳng thức: \(1-\cos2\alpha=2\sin^2\alpha\) với \(\alpha< 45^o\) bằng cách vẽ tam giác ABC vuông có \(\widehat{C}=\alpha< 45^o\)
đường trung tuyến AM,đường cao AH
Cho tam giác ABC vuông tại A. AB<AC; góc C \(=\alpha< 45độ\), trung tuyến AM.BC\(=2\alpha\)
a) chứng minh \(\sin2\alpha=2sin\alpha\)
b) \(1+\cos2\alpha=2\cos^2\alpha\)
c) \(1-\cos2\alpha=2\cos^2\alpha\)
cho tam giác có góc B> góc C, đường cao AH, trung tuyến AM. Đặt góc MAH= alpha. Tìm hệ thức giữa tan alpha với cot B và cot C
cho tam giác ABC góc A= 90 độ, góc C=\(\alpha\)< 45 độ, trung tuyến AM, đường cao AH, BC=a, AC=b, AH=h.
a) tính sin\(\alpha\), cos\(\alpha\), sin2\(\alpha\) theo a,b,h
b) chứng minh rằng sin2\(\alpha\)=2 sin\(\alpha\).2 cos\(\alpha\)
Cho tam giác nhọn ABC, góc B> góc C, đường cao AH và đường trung tuyến AM.
a) CMR: HC-HB=2HM
b) Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR: \(\tan\alpha=\frac{\cot C-\cot B}{2}\)
Cho tam giác ABC vuông ở A có AB<AC và trung tuyến AM, góc ACB =\(\alpha\) , góc AMB=\(\beta\) . Chứng minh
\(\left(\sin\alpha+\cos\alpha\right)^2=1+\sin\beta\)
1.Đơn giản bt : \(B=\sin\alpha-\sin\alpha\cdot\cos^2\alpha\)
2. Cho \(\tan\alpha=3\). Chứng minh \(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^3\alpha+\cos^3\alpha}=\frac{13}{14}\)
3. Cho tam giác ABC vuông tại A (AB < AC), AH vuông góc với BC
a) Cm \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
b) Từ B vẻ đường thẳng vuông góc với trung tuyến AM cắt AH tại D cắt AM tại E, cắt AC tại F. Cm D là trung điểm của BF và BE.BF=BH.BC
c) Cho AB =120cm, AC=160cm. Tính DE, AF
Cho tam giác ABC, AB=AC=1, \(\widehat{A}=2\alpha\left(0< \alpha< 45\right)\). Vẽ đường cao AD, BE
a) Các tỉ số lượng giác \(\sin\alpha,\cos\alpha,\sin2\alpha,\cos2\alpha\)được biểu diễn bởi những đường thẳng nào?
b) Chứng minh: tam giác ADC đồng dạng với tam giác BEC, từ đó suy ra các hệ thức:
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(\cos2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1=\cos^2\alpha-\sin^2\alpha\)