Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC:
Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC:
Độ dài cạnh của tam giác đều nội tiếp đường tròn (O;R) bằng
A. R/2; B. (R 3 )/2;
C. R 3 D. Một đáp án khác.
Hãy chọn phương án đúng.
a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
Cho tam giác ABC vuông tại A, đường cao AH,vẽ đường tròn tâm A,bán kính R (với AH=R). Kẻ các tiếp tuyến BD, CE với đường tròn này ( D và E là các tiếp điểm khác với H)
1/Chứng minh rằng tứ giác ADBH nội tiếp một đường tròn
2/tính số BD.CE theo R
3/Cho góc ACB= 30 độ. Tính diện tích tam giác ABC nằm ngoài đường tròn tâm A,bán kính AH theo R
Cho tam giác cân có cạnh đáy a, cạnh bên b. Tính R và r (biết R là bán kính đường tròn ngoại tiếp tam giác ABC và r là bán kính đường tròn nội tiếp tam giác ABC)
#các_bạn_giúp_mừn_nhaaaa ^_^
1) CMR: Trong tam giác vuông đường kính đường tròn nội tiếp bằng tổng 2 cạnh góc vuông trừ cạnh huyền
2) Cho tam giác ABC vuông A đường cao AH. Gọi (O;R) bán kính (O1;R1) ; (O2;R2) thứ tự là đường tròn nội tiếp tam giác ABC; ABH; ACH.
a: CMR: R + R1 + R2 = AH
b: R^2 = R1^2 + R2^2
c: Tính O1O2. Biết AB = 3cm; AC = 4cm.
3) Cho đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC thứ tự B;E;F. Qua E kẻ đường song song BC cắt AD, BF lần lượt tại M, N.
CMR: M là trung điểm EN
1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
Cho (O; R) đường kính AB. M thuộc (O); (M khác A; B, MA < MB) . Trên tia MB lấy N sao cho MA = MN. Dựng hình vuông AMNP. Kéo dài MP cắt (O) ở C (C khác M ).
1) Chứng minh rằng tam giác ABC vuông cân.
2) Gọi I là tâm đường tròn nội tiếp tam giác AMB . Chứng minh rằng tứ giác AINB nội tiếp.
3) Chứng minh rằng tam giác BNC cân. Tính bán kính đường tròn ngoại tiếp AINB theo R .
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF