Cho tam giác ABC, lấy điểm D thuộc cạnh BC. Kẻ tia Bx song song với AD và Bx cắt đường thẳng CA kéo dài tại E, kẻ tia Cy song song với AD và Cy cắt đường thẳng BA kéo dài tại F. Chứng minh rằng: a) CD.CE=CA.CB
Cho tam giác ABC (AB < AC), đường phân giác AD của B A C ^ (với D ∈ B C ). Từ trung điểm M của BC, kẻ một đường thẳng song song với AD, cắt AC tại F và cắt tia đối của tia AB tại E. Chứng minh BE = CF
Ko cần vẽ hình
Cho tam giác ABC ( AB < AC ), đường phân giác AD của góc BAC ( với D thuộc BC ). Từ TĐ M của BC, kẻ một đường thẳng song song với AD, cắt AC tại F và cắt tia đối của tia AB tại E. CM : BE = CF.
Ko cần vẽ hình
Cho tam giác ABC ( AB < AC ), đường phân giác AD của góc BAC ( với D thuộc BC ). Từ TĐ M của BC, kẻ một đường thẳng song song với AD, cắt AC tại F và cắt tia đối của tia AB tại E. CM : BE = CF.
Cho tam giác ABC cân tại A, E thuộc AB. Trên tia đối tia CA lấy F sao cho CF=BE. Vẽ Bx vuông góc AB, Cy vuông góc AB. Gọi I giao điểm Bx và Cy.
a) Chứng minh tam giác IEF cân.
b) Qua E vẽ đường thẳng song song với BC cắt AC tại D. Chứng minh CD=CF
c) H giao điểm EF và BC. Chứng minh E, F đối xứng qua IH.
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC điểm D thuộc cạnh BC. Từ D kẻ đường thẳng song song với cạnh AB, cắt cạnh AC tại E và đường thẳng qua D song song với AC cắt AB tai F. Chứng minh hai điểm E và F đối xứng với nhau qua trung điểm I của đoạn thẳng AD
Cho tam giác ABC kẻ EF song song với BC (E thuộc AB, F thuộc AC) sao cho AE =CF. Qua E kẻ 1 đường thẳng song song với AC cắt BC tại D a, chứng minh AD là tia phân giác của góc A b, hãy dựng 1 đường thẳng MN song song với (M thuộc AB, N thuộc AC) sao cho BM =AN c, tam giác ABC phải có điều kiện gì để tứ giác MNDB là hình thoi
Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T.
Chứng minh rằng M H A D + M K B E + M T C F = 1