Cho tam giác ABC có góc A=90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM //AC (M thuộc AB). Gọi O là giao điểm của AD và MN. E, I, K lần lượt là trung điểm của BC, BD, DC.
a. AD = MN
b. AE vuông góc với MN
c. Tứ giác MNKI là hình thang vuông
Cho TAM GIÁC abc CÓ \(\widehat{A}\)=90; ĐƯỜNG cao AH. Gọi D là điểm trên cạnh BC sao cho BA=BD. Từ H kẻ HM//AD, từ D kẻ DN vuông góc AC
a) cm tứ giác AMHD là hình thang cân
b) cm: DM vuông góc AB
c)cm: AMDN là hình chữ nhật và AD là tia phân giác của \(\widehat{HAC}\)
d) tÌM ĐK của tam giác ABC để tứ giác AMDN là hình vuông
e) Qua A, vẽ tia Ax//BC sao cho tia Ax cắt đường thẳng DN tại K. Cm AD\(\perp\)BK
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho tam giác ABC có AB < AC, đường phân giác AD, M là trung điểm của BC. Kẻ đường thẳng song song với AD cắt AB, AC lần lượt tại E, K Gọi O là giao điểm AM và DK
Chứng minh
a)AO.OK=OM.OD
b)Cho AB=5,AC=10,BC=12 Tính DB
c)AE=AK và AB/CE=BD/CM
d)BK=CE
Cho ΔABC ( AB<AC), đường phân giác AD. Qua trung điểm M của BC, kẻ đường thẳng // AD, cắt AC,AB lần lượt tại E,K. Gọi O là giao điểm AM và DK
a, CM AO.OK=DO.OM
b, cho AB=5cm, AC=10cm, BC=12cm. tinhd BD
c, cm AE=AK, AB/CE=BD/CM
Cho hình thang ABCD ( AB // CD). Gọi O là giao điểm của AC và BD. Qua O vẽ đường thẳng song song AB, CD cắt AD và BC lần lượt tại M và N
a) CM: O là trung điểm của MN
b) CM: 1/AB + 1/CD = 1/CM
c) CM: S tam giác OAD = S tam giác OBC
d) Gọi E là giao điểm của AD và BC. Gọi F là giao điểm của OE và CD. CM: F là trung điểm của CD
Cho tam giác ABC có góc BAC = 90 độ, AB< AC, đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên cạnh AB
a) CM rằng MN=AH
b) CM rằng AM.AB=AN.AC=AH^2
c) Gọi K là giao điểm của NM và BC. CM rằng KB.KC= KH^2
d) Gọi O là trung điểm của BC, I là giao điểm của MN và AH.CM rằng OI vuông góc với AK
e) Giả sử AH/AO = 40/41. Tính tỉ số AB/AC
cho hình thang ABCD (AD//BC) . Gọi M,N lần lượt là trung điểm của AB và DC . Gọi I là giao điểm của MN với BD . Biết AD = 16 CM , BC = 12 CM
a) tính MN
b) chứng tỏ I là trung điểm của BD . Tính IN,IM