Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D.
Chứng minh:2 tam giác ADB=ADC
Kẻ DH vuông góc với AB (H thuộc AB), DK vuông góc với AC (K thuộc AC)
Chứng minh DH=DK
Biết góc A=4 nhân góc B. Tính số đo các góc tam giác ABC
Bài 1:
Cho tam giác ABC vuông tại A, AB= 3cm, Ac= 4cm. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) Tính BC?
b) Chứng minh tam giác ABE= tam giác HBE
Bài 2:
Cho tam giác ABC vuông tại A, góc ABC= 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) So sánh các cạnh của tam giác ABC
b) Chứng minh tam giác ABE = tam giác HBE
c) Qua H vẽ HK song song BE( K thuộc AC). Chứng minh tam giác EHK đều
Cho tam giác ABC có các góc đều nhọn và AB < AC. Tia phân giác của góc A cắt BC tại D. Vẽ BE vuông góc với AD tại E . Tia BE cắt AC tại F :
a, Chứng minh: AB= AF
b, Qua F vẽ đường thẳng với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh DH = KF và DH // KF
c, Chứng minh góc ABC lớn hơn góc C
Cho tam giác abc . tia phân giác của góc a cắt bc tại d . Qua d kẻ đường thẳng song song với ac cắt ab tại e. Qua e kẻ đường thẳng song song với ad cắt bc tại h. Chứng minh rằng :
a; góc hed bằng góc cad ;
b; eh là tia phân giác của góc bed
Cho tam giác ABC, tia phân giác góc B cắt AC tại D. Qua D kẻ tia Dx // AB , Dx cắt BC tại M . Kẻ My là tia phân giác của góc DMC , Bz là tia phân giác của góc ngoài tại đỉnh B . C/m Bz vuông góc với My
A) Trình bày cách vẽ tam giác ABC biết cạnh AB = 5cm, BC = 4cm, góc ABC bằng 140°.
B) Vẽ tia Bx là tia phân giác của góc ABC. Tính góc CBx;
C) Chứng tỏ rằng tia Bx cắt cạnh AC của tam giác tại điểm 𝙸 nằm giữa hai điểm A và C.
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC có góc A= 60 độ. Các tia phân giác của góc B và góc C cắt nhau ở I. Các tia phân giác ngoài của goác B và C cắt nhau ở K. Tia phân giác góc B cắt tia phân giác góc ngoài ở đỉnh C tại E. Tính góc BIC, BKC, BEC.
Vẽ tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a)Đo góc BAC
b)Lấy điểm M thuộc cạnh BC sao cho góc MAC =200.Tính góc MAB
c)Trong góc MAB vẽ tia Ax cắt BC tại N sao cho góc NAB=500.Chứng tỏ AM là tia phân giác của góc NAC.