Cho tứ diện ABCD có AD ⊥ (ABC), ABC là tam giác vuông tại B. Biết
BC=A, AB=a 3 , AD=3a Quay các tam giác ABC và ABD xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng
Cho tam giác ABC có diện tích bằng 30. Quay tam giác ABC quanh cạnh BC thu được vật thể tròn xoay có thể tích bằng 100π . Tính độ dài cạnh BC.
A. 6.
B. 9.
C. 12.
D. 18.
Cho tam giác ABC vuông tại B có AC=2a, BC=a khi quay tam giác ABC quay quanh cạnh góc vuông AB thì đường gấp khúc ABC tạo thành một hình nón tròn xoay có diện tích xung quanh bằng
Cho tam giác ABC có BAC= 120 o . Quay tam giác ABC (bao gồm cả điểm trong tam giác) quanh đường thẳng AB ta được một khối tròn xoay. Thể tích khối tròn xoay đó bằng :
Trong không gian cho tam giác ABC vuông tại A có AB = 2a và BC = 2a. Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A . πa 3
B . 3 π a 3
C . 3 3 πa 3
D . 2 3 πa 3
Tam giác ABC vuông cân đỉnh A có cạnh huyền là 2. Quay hình tam giác ABC quanh trục BC thì được khối tròn xoay có thể tích là:
A. 2 2 3 π
B. 4 3 π
C. 2 3 π
D. 1 3 π
Cho tam giác ABC đều cạnh bằng a, trọng tâm G. Tam giác AGC quay quanh AG tạo thành một khối tròn xoay có thể tích là:
A . πa 3 3 36
B . πa 3 3 12
C . πa 3 3 24
D . πa 3 3 18
Cho tam giác vuông cân cân ABC tại A, BC= a 2 Quay tam giác quanh đường cao AH ta được hình nón tròn xoay. Thể tích khối nón bằng
Cho tam giác ABC có AB=3, BC=5, CA=7 Tính thể tích của khối tròn xoay sinh ra là do hình tam giác ABC quay quanh đường thẳng AB: