A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
A = AB giao d1=> Tọa độ A là nghiệm của hệ : {5x−3y+2=04x−3y+1=0{5x−3y+2=04x−3y+1=0<=> {x+1=04x−3y+1=0{x+1=04x−3y+1=0<=> {x=−1y=1+4x3{x=−1y=1+4x3<=> {x=−1y=−1{x=−1y=−1=> A (-1; -1)
Đường thẳng d2 có vtpt là →n2(7;2)n2→(7;2) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: {x=−1+7ty=−1+2t{x=−1+7ty=−1+2t(t ∈∈ R)
Gọi H = d1 ∩∩ d2 => tọa độ H là nghiệm của pt: {7x+2y−22=04x−3y+1=0{7x+2y−22=04x−3y+1=0 <=> {x=6429y=9529{x=6429y=9529=> H (6429;95296429;9529)
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là →nn→ (5; -3)
=> Phương trình CH có dạng : {x=6429+5ty=9529−3t{x=6429+5ty=9529−3t
B = AB ∩∩ d2 => Tọa độ B là nghiệm của hệ : {5x−3y+2=07x+2y−22=0{5x−3y+2=07x+2y−22=0 <=> {x=2y=4{x=2y=4=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là →n1n1→(4;-3)
=> phương trình đường thẳng BC là: {x=2+4ty=4−3t