Đáp án D
Gọi G là trọng tâm tam giác ABC.
Ta có
Đáp án D
Gọi G là trọng tâm tam giác ABC.
Ta có
Cho tam giác ABC, M là điểm thỏa mãn
|2\(\overrightarrow{MA}\) + \(\overrightarrow{MB}\)|. Tập hợp điểm M là:
A. Là đỉnh thứ tư của hình bình hành dựng trên hai cạnh AB, AC
B. Đường trung trực của đoạn thẳng cố định
C. Đường thẳng đi qua trung điểm của AB và song song với BC D. Là đường tròn có bán kính bằng BC
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Cho I; J; K lần lượt là trung điểm của các cạnh AB; BC; CA của tam giác ABC. Giả sử M là điểm thỏa mãn điều kiện M A → + 2 M B → + M C → = 0 → . Khi đó vị trí điểm M là:
A. M là giao điểm 2 đường chéo của hình bình hành BIKJ.
B.M là đỉnh thứ tư của hình bình hành AIKM.
C. M là trực tâm của tam giác ABC.
D.M là trọng tâm của tam giác IJK.
Cho ngũ giác ABCDE. Dựng điểm M thỏa mãn điều kiện M A → + M B → + M C → + M D → + M E → = 0 → . Gọi G là trọng tâm tam giác ABC, H là trung điểm của DE. Khi đó:
A. M là trung điểm của GH
B. M là điểm thỏa mãn MH = 2MG
C. M là điểm thỏa mãn M H → = 3 2 M G →
D. M là điểm thỏa mãn M H → = 3 2 M G →
Cho tam giác ABC có AB=4, AC = 5 , BAC =120°. G là trọng tâm của tam giác ABC, điểm E thỏa mãn vector AE=2/3 vector EC
a) Biểu diễn BE theo AB,AC.
b) Tìm tập hợp điểm I thỏa mãn đẳng thức vec tơ |IA+IG|=|IA–IG|.
c) M là một điểm khác G thỏa(GC-GB)(MA+MB+MC)=0. Chứng minh MG vg BC.
vector het nha
Câu 1: cho tam ABC. Có bao nhiêu điểm M thỏa mãn | vecto MA+vectoMB+vectoMC| = 3
a.1
b.2
c.3
d. vô số
Câu 2: cho tam giác ABC đều cạnh a. biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+3vectoMB+4vectoMC|=|vectoMB-vectoMA| là đường tròn cố định có bán kính R. tính bán kính R theo A?
Câu 3: Cho 2 điểm A.B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+vectoMB|=|vectoMA+2vectoMB| là:
a. đường trung trực của đoạn thẳng AB
b. đường tròn đường kính AB
c. đường trung trực của đoạn thẳng IA
d. đường tròn tâm A, bán kính AB
Cho A(m;3) B(2;1) C(-4;5) a) tìm điều kiện của m để A,B,C là 3 đỉnh của một tam giác b) tìm toạ độ trọng tâm G của tam giác ABC theo m. Xác định m để G nằm trên đường thẳng d: { x= 1+t { y= 5-2t
Cho A(m;3) B(2;1) C(-4;5) a) tìm điều kiện của m để A,B,C là 3 đỉnh của một tam giác b) tìm toạ độ trọng tâm G của tam giác ABC theo m. Xác định m để G nằm trên đường thẳng d: { x= 1+t { y= 5-2t
Các điểm M(2;3). N(0;-4), P(-1;6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC.
a)Tìm tọa độ đỉnh A,B,C của Tam giác.
b) C/m tam giác ABC và MNP có cùng trọng tâm