Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow80^0+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^0\)
Do BE là phân giác góc B nên: \(\widehat{EBC}=\dfrac{1}{2}\widehat{B}\)
Do CE là phân giác góc C nên: \(\widehat{ECB}=\dfrac{1}{2}\widehat{C}\)
Trong tam giác BCE:
\(\widehat{BEC}+\widehat{EBC}+\widehat{ECB}=180^0\)
\(\Rightarrow\widehat{BEC}+\dfrac{1}{2}\widehat{B}+\dfrac{1}{2}\widehat{C}=180^0\)
\(\Rightarrow\widehat{BEC}+\dfrac{1}{2}\left(\widehat{B}+\widehat{C}\right)=180^0\)
\(\Rightarrow\widehat{BEC}+\dfrac{1}{2}.100^0=180^0\)
\(\Rightarrow\widehat{BEC}=130^0\)