D đối xứng B qua A
=>A là trung điểm của BD
Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>\(\widehat{BCA}=\widehat{DCA}\)
=>CA là phân giác của góc BCD
D đối xứng B qua A
=>A là trung điểm của BD
Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>\(\widehat{BCA}=\widehat{DCA}\)
=>CA là phân giác của góc BCD
Cho tam giác ABC có góc A bằng 90 độ. Trên tia đối của AB lấy điểm D sao cho AD=AB.
Chứng minh tam giác ABC = tam giác ADC và tia CA là phân giác BCD
Lấy điểm M là trung điểm BC. Qua C kẻ đường thẳng song song với AB cắt tai AM tại E. Chứng minh CE = CA và DC// AE
Chứng Minh BE vuông với EC
Cho tam giác ABC có AB bằng AC và BC bé hơn AB, gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM bằng tam giác ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b) Trên cạnh AB lấy điểm D sao cho CB bằng CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD bằng CE. Chứng minh: góc BCE bằng góc ADC
d) Chứng minh: BA bằng BE
Cho tam giác ABC có góc BAC = 900. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D.
a, Chứng minh rằng: BD = AC
b, Chứng minh rằng: AB vuông góc với BD
c, Cho góc ACB = 300. Tính các góc của tam giác BCD
Cho tam giác ABC có AB=AC và BC < AB . Gọi M là trung điểm của BC .
a, Chứng minh AM là tia phân giác của góc BAC
b, Trên cạnh AB lấy điểm D sao cho CB = CD . Kẻ tia phân giác góc BCD tia này cát cạnh BD tại N. Chứng minh CN\(\perp\)BD
c, Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh rằng BE = 2 BN + CE
Cho tam giá ABC, góc BAC bằng 90 độ. M là trung điểm của BC
a) biết góc ABC bằng 2 góc ACB; góc ABC
b) trên tia đối của tia MA lấy điểm D sao cho DM bằng MA. Chứng minh tam giác ACM bằng tam giác DBM
c) chứng minh BD vuông góc với AB
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.
Cho tam giác ABC có AB = AC và BC < AB, M là trung điểm BC.
a) Chứng minh AM là tia phân giác góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Tia phân giác góc BCD cắt BD tại N. Chứng minh CN vuông góc với BD.
c) Trên tia đối tia CA lấy điểm E sao cho AD = CE. Chứng minh ˆ B C E = ˆ A D C .
d) Chứng minh BA = BE.
Cho tam giác ABC cân tại A. Vẽ AH là tia phân giác của góc BAC ( H thuộc BC). a) Chứng minh tam giác ABH = tam giác ACH . Khi góc BAC bằng 300, tính số đo góc ABC. b) Gọi D là trung điểm của AC. Trên tia đối của tia DH lấy điểm E sao cho D là trung điểm của HE. Gọi F là trung điểm của AH, Q là giao điểm của CF và HD. Chứng minh AH song song với CE và HQ=1/3 HE.
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE