Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoàng long

cho tam giác ABC có góc B= góc C. Tia p/g BD và CE của góc B và góc C cắt nhau tại O. kẻ OH vuông góc với AC OK vuông góc với AB

a, cm tam giác BCD = tam giác CBE

b, ob=oc

c,oh=ok

 

Hoàng Thanh Huyền
8 tháng 1 2020 lúc 14:03

B C A H K O E D
a) Xét t.g. BCD và t.g. CBE, có:

     ^B1=^C1 (gt)

       BC chung                     => t.g BCD= t.g. CBE

     ^EBC=^DCB (gt)                        (g.c.g)

=> CD = BE ( 2 cạnh tương ứng)

=> BD = CE ( 2 cạnh tương ứng)

=> ^ODC= ^OEB ( 2 góc tương ứng)

b) Xét t.g. OBE và t.g. OCD, có:

           ^B2 = ^C2 (gt)

             CD= BE (cmt)               => t.g. OBE= t.g. OCD

           ^ ODC= ^OEB (cmt)                    (g.c.g)

=> OB=OC ( 2 cạnh tương ứng)

c) Ta có: OB+OD= BD; OC+OE= CE

Mà OB=OC (theo phần b); BD=CE (theo phần a)

=> OD=OE

*Xét t.g. OKE, có: ^KEO+ ^EOK= 900

*Xét t.g. OHD, có: ^ODH+ ^DOH= 900

Do ^ ODH = ^KEO => ^EOK = ^DOH

* Xét t.g. OKE và t.g. OHD, có:

    ^EKO = ^DHO = 900

      OE= OD (cmt)                         => t.g. OKE= t.g. OHD

     ^EOK = ^DOH (cmt)                  (cạnh huyền- góc nhọn)

=> OK=OH ( 2 cạnh tương ứng)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lun Pham
Xem chi tiết
girl fun
Xem chi tiết
Nguyễn Trà My2
Xem chi tiết
Đinh Thị Khánh Linh
Xem chi tiết
Lucya
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Quỳnh Hoàng
Xem chi tiết
pham nguyen dieu huyen
Xem chi tiết