Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{BAD}+\widehat{B}\)
Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{CAD}+\widehat{C}=\widehat{BAD}+\widehat{C}\)
\(\widehat{ADC}-\widehat{ADB}\)
\(=\widehat{BAD}+\widehat{B}-\widehat{BAD}-\widehat{C}\)
\(=\widehat{B}-\widehat{C}=20^0\)
mà \(\widehat{ADC}+\widehat{ADB}=180^0\)
nên \(\widehat{ADC}=\dfrac{180^0+20^0}{2}=100^0\)