a) Xét ΔABM và ΔICM có
AM = MI (gt)
\(\widehat{AMB}=\widehat{CMI}\)(đối đỉnh)
BM=MC (AM là đường trung tuyến)
➩ ΔABM = ΔICM (c-g-c)
b) Xét ΔABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ 60^0+90^0+\widehat{C}=180^0\\ \widehat{C}=30^0\)
Mà \(\widehat{B}=\widehat{MCI}=90^0(ΔABM = ΔICM)\)
\(\Rightarrow\widehat{ACB}+\widehat{MCI}=\widehat{ACI}\\ 30^0+90^0=\widehat{ACI}\\ \widehat{ACI}=120^0 \)
c) Xét ΔACI có: AB + CI > AI (Bất đẳng thức trong tam giác)
hay AB + CI > AM + MI
AB + CI > 2AM
Mà AB = CI (ΔABM = ΔICM)
➩ AB + BA > 2AM (đpcm)