Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Một người bình thường vô...

Cho tam giác ABC có góc A=90 độ, đường cao AH. Trên cạnh BC lấy D sao cho BD=BA. Đường thẳng vuông góc với BC tại D cắt AC tại E

a) CMR: AE=ED.

b) CMR: tia AD là tia phân giác của góc HAC.

c) Đường phân giác của góc ngoài tại đỉnh C cắt đường thẳng BE tại K. Tính góc BAK.

d) CMR: AB+AC<BC+AH

e) So sánh HD và DC

Lan Anh
27 tháng 6 2021 lúc 17:50

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

Lan Anh
27 tháng 6 2021 lúc 17:54

undefined

Lan Anh
27 tháng 6 2021 lúc 17:55

undefined

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 18:21

a) Xét ΔEAB vuông tại A và ΔEDB vuông tại D có 

BE chung

BA=BD(gt)

Do đó: ΔEAB=ΔEDB(Cạnh huyền-cạnh góc vuông)

Suy ra: EA=ED(Hai cạnh tương ứng)

b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)(BD=BA)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của \(\widehat{HAC}\)(đpcm)


Các câu hỏi tương tự
Phạm Hà Linh
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Uyensugar
Xem chi tiết
Ánh Nguyễn Minh
Xem chi tiết
tuấn tam
Xem chi tiết
Ngô Dương Hoàng Châu
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Helen Tran
Xem chi tiết
Nhat th
Xem chi tiết