Cho tam giác ABC có góc A=90 độ, đường cao AH. Trên cạnh BC lấy D sao cho BD=BA. Đường thẳng vuông góc với BC tại D cắt AC tại E
a) CMR: AE=ED.
b) CMR: tia AD là tia phân giác của góc HAC.
c) Đường phân giác của góc ngoài tại đỉnh C cắt đường thẳng BE tại K. Tính góc BAK.
d) CMR: AB+AC<BC+AH
e) So sánh HD và DC
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
a) Xét ΔEAB vuông tại A và ΔEDB vuông tại D có
BE chung
BA=BD(gt)
Do đó: ΔEAB=ΔEDB(Cạnh huyền-cạnh góc vuông)
Suy ra: EA=ED(Hai cạnh tương ứng)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)(BD=BA)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAC}\)(đpcm)