Cho tam giác ABC có A tù, đường thẳng d thay đổi nhưng luôn qua A và cắt đường tròn (O) đường kính AB, đường tròn (O') đường kính AC lần lượt tại M và N sao cho A nằm giữa M và N
a) Chứng minh BCNM là hình thang vuông
b) Cho H thuộc BC. Chứng minh tỉ số \(x = {HM\over HN}\)
c) Gọi I là trung điểm của MN, K là trung điểm của BC. Chứng minh bốn điểm A, H, K, I cùng thuộc một đường tròn và điểm I di chuyển trên một cung tròn cố định.
d) Xác ddihj vị trí của đường thẳng d để diện tích tam giác HMN lớn nhất.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O), đường kính BC, A là điểm thuộc (O) sao cho AB<AC, D là điểm nằm giữa O và C. Đường thẳng vuông góc với BC tại D cắt AC tại E và AB tại F.
a/ Chứng minh các tứ giác ABDE và ADCF nội tiếp
b/ Chứng minh góc AEF = góc ABC
c/ Tiếp tuyến tại A của đường tròn (O) cắt DE tại M. Chứng minh tam giác AME cân tại M.
d/ Gọi I là tâm đường tròn ngoại tiếp tứ giác ADCF. Chứng minh OI vuông góc AC
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Một đường thẳng qua A cắt đường tròn đường kính AB tại M, cắt đường tròn đường kính AC tại N (A nằm giữa 2 điểm M,N). Gọi I là giao điểm của AB và HM, K là giao điểm của AC và HN
a) chứng minh H nằm trên 2 đường tròn đường kính AB và AC
b) chứng minh tứ giác AIHK nội tiếp
c) chứng minh IK // MN
cho tam giác ABC nhọn (AB>AC) .đường tròn tâm O đường kính BC cắt AB ,AC theo thứ tự tại F và E ;BE cắt CF tại I và cắt đường tròn (O) tại M (M nằm giữa A và I).EB cắt đường tròn đường kính AC tại K và Q(K nằm giữa B và E).
a)chứng minh tứ giác CIHE nội tiếp
b)Gọi P là giao điểm của IE và FC . chứng minh:EF.HP=EP.HF
Làm hộ em với chi tiết càng tốt ạ
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
tam giác ABC vuông tại A , đường tròn tâm O đường kính AB cắt đường tròn tâm O' đường kính AC tại H.1 đường (đ) quay quanh A cắt (ô),(ô') lần lượt tại M,N.a) chứng minh H thuộc BC; BMCN hình gì? b) chứng minh HM/HN không đổi c)I,K trung điểm MN,BC chứng minh A,H,I,K thuộc 1 đường tròn , nhận xét về chuyển động của I d) xác định trị của d để diện tích HMN max
Cho đường tròn (O; R) và điểm A cố định thuộc đường tròn. Trên tiếp tuyến với (O) tại A lấy một điểm K cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O cắt (O) tại điểm B và C (B nằm giữa C và K), Gọi M là trung điểm của BC.
1) Chứng minh bốn điểm A, O, M, K cùng thuộc một đường tròn.
2) Vẽ đường kính AN của đường tròn (O). Đường thẳng qua A và vuông góc với BC cắt MN tại H. Chứng minh tứ giác BHCN là hình bình hành.
3) Chứng minh H là trực tâm tam giác ABC
4) Khi đường thẳng d thay đổi và thỏa mãn điều kiện của đề bài, điểm H di động trên đường nào?