Cho tam giác ABC ( góc A <90 độ) đường cao CH. Chứng minh: \(BC^2=AB^2+AC^2-2AB.AH\)
Hệ thức trên thay đổi như thế nào nếu góc A > 90 độ
cảm ơn các bạn trước nhé
Cho tam giác ABC có góc B = 90 độ, góc A = 30 độ, BC = 3cm, đường cao BH
a, Tính AB, AC, góc C
b, Tính diện tích tam giác ABH
c, Tính bán kính đường tròn ngoại tiếp tam giác ABC
d, Tính AG ( G là trọng tâm tam giác ABC )
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
Cho tam giác ABC có đường cao BH góc A = anpha . CHứng minh rằng
a, Nếu góc anpha < 90 độ thì diện tích ABC = \(\frac{1}{2}AB.AC.\) sin anpha
b, Nếu góc anpha > 90 độ thì diện tích ABC = \(\frac{1}{2}AB.AC\) . (180 độ - anpha)
cho tam giác ABC,góc A=90;đường cao AH.Kẻ HD vuông góc AB,HE vuông góc với AC.
CM DE^3=BD.BC.CE
Cho tam giác ABC, góc A=90 độ, đường trung tuyến AM cắt đường phân giác BD và vuông góc tại I. Tính AB,BC,AC khi biết BD=a
Cho tam giác nhọn ABC có hai đường cao BD và Ce cắt nhau tại H . Trên HB và HC lần lượt lấy điểm M và N sao cho góc AMC = góc ANB = 90 độ . Chứng minh AM = AN
Cho đoạn BC cố định có độ dài 2a với a > 0 và một điểm A di động sao cho góc BAC = \(90^o\). Kẻ AH vuông góc với BC tại H. Gọi HE và HF lần lượt là đường cao của tam giác ABH và tam giác ACH.
1. Chứng minh rằng: \(BC^2=3AH^2+BE^2+CF^2\)
2. Tìm điều kiện cùa tam giác ABC để tổng \(BE^2+CF^2\) đạt giá trị nhỏ nhất