Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)
\(=AH^2+BH^2-AH^2-CH^2\)
\(=BH^2-HC^2\)(đpcm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)
\(=AH^2+BH^2-AH^2-CH^2\)
\(=BH^2-HC^2\)(đpcm)
Bài 1: Cho tam giác ABC cân tại A. DE song song với BC ( D thuộc AB, E thuộc AC ). CMR: BE > 1/2 (DE+BC)
Bài 2: Cho tam giác ABC , góc A=90 Độ, góc B > C. vẽ AH vuông góc với BC. AH=DH ( D thuộc AH) và CE= EH ( E thuoc HC ) . CMR:
a) BH < CH , BD < CD < AC
b) Kẻ Cx vuông góc với BC, Cx cắt AE tại K. CM: AH < KE < AC
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
Cho tam giác ABC cân tại A ( AB = AC ) , kẻ BH vuông góc với AC tại H . Biết AH = 7cm ,HC = 2 cm . Tính độ dài đáy BC của tam giác cân ABC
1Cho tam giác ABC cân tại A. Kẻ BH vuông với AC biết AH= 6cm HC= 3cm. Tính BC
2 Cho tam giác ABC vuông tại A có góc B=60độ CMR AB=1/2BC
Cho tam giác ABC có B A C ^ > 90 ° . Kẻ AH vuông góc với BC tại H. Biết AB = 15 cm; AC = 41 cm, BH = 12 cm. Tính độ dài cạnh HC.
Bài 1: Cho tam giác ABC cân tại A. Vẽ BH vuông góc AC CK vuông góc AB.
a; Vẽ hình
b; Cmr AH=AK
c; Gọi I la trung điểm BH và CK. Cmr tam giác KAI=HAI
d; Đường thẳng AI cắt BC tại H . Cm AI vuông góc BC tại H
Bài 2: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC
a; Cm BH= HC
b; Kẻ HE vuông góc AC HF vuông góc AB . Hỏi tam giác HÈ là tam giác gì vì sao
cho tam giác ABC,AB=AC, góc A bé hơn 90 độ. kẻ BH vuông góc AC, H thuộc AC.
a) tính BC biết AH=6cm, HC=4cm.
b) chứng minh: AB^2+BC^2+AC^2=3BH^2+2AH^2+CH^2
Cho tam giác ABC, góc A = 90 độ, AB<AC. O là trung điểm BC. K thuộc tia đối OA sao cho OA = OK. Vẽ AH vuông góc với BC tại H. Trên tia Hc lấy HD = HA. Đường vuông góc BC tại D cắt AC tại E .
a, CMR: tam giác ABC = CKA
b, CMR: AB = AE
c, M là trung điểm BE, Tính góc CAM?
d, CMR: 1/AB^2 + 1/AC^2 = 1/AH^2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2