Cho tam giác ABC nhọn có AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Từ B kẻ đường thẳng vuông góc với AB và từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại K.
a) Chứng minh BHCK là hình bình hành
b) Chứng minh H, M, K thẳng hàng
c) Chứng minh tam giác MEF là tam giác cân
Cho tam giác ABC nhọn có AB < AC và đường cao BM, CN cắt nhau tại H. a) Chứng minh tam giác AHN đồng dạng tam giác CBN, từ đó suy ra AH.CN = BC.AN. b) Gọi I, K lần lượt là trung điểm của AH và BC. Đường thẳng vuông góc với AC tại C cắt IK tại E. Chứng minh IK // AE. c) Chứng minh IK là trung trực của MN d) Khi tam giác ABC có cạnh BC cố định, điểm A thay đổi nhưng sao cho tam giác ABC nhọn. Chứng minh BH.BM + CH.CN có giá trị không đổi.
Câu 17. Cho tam giác ABC nhọn (AB<AC), đường cao BE và CF cắt nhau tại H. Qua C, D kẻ các đường thẳng vuông góc với AC, AD cắt nhau tại K.
a) Tứ giác BHCK là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.
c) Từ H kẻ HG vuông góc với BC (G thuộc BC).
Lấy I thuộc tia đối của tia GH. Chứng minh: BCKI là hình thang cân.
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H
a/ chứng minh tam giác AEB ~ tam giác AFC
b/ chứng minh tam giác AEF ~ ABC
c/ tia AH cắt BC tại D. Chứng minh FC là tia phân giác góc DFE
d/ đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC ở C tại M. gọi O là trung điểm của BC, I là trung điểm của AM. so sánh diện tích của 2 tam giác AHM và tam giác IOM
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
c/ chứng minh H, K , M thẳng hàng
chủ yếu câu c giúp giùm mình nha
Cho tam giác ABC nhọn, đường cao BD, CE cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với Ac tại c cắt nhau tại G. Gọi HG cắt BC tại M. Qua H kẻ đường thẳng vuông góc với HG cắt AB, AC tại P, Q. Chứng minh
a) M là trung điểm của BC
b) Tam giác CMH đồng dạng tam giác AHP
c) PM=QM
Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc AB, MK vuông góc AC. E là trung điểm của MH.
a) Chứng minh B,E,K thẳng hàng
b) Gọi F là trung điểm của MK. Đường thẳng HK cắt AE tại I và AF tại J. Chứng minh HI = KJ.
cho tam giác ABC có 3 góc nhọn, các đường cao BD, CE của tam giác cắt nhau tại H. chứng minh rằng:
a) tam giác ABC đồng dạng với tam giac ACE
b) HE.HC=HD.HB
c) kẻ đường vuông góc với AB tại B đường vuông góc voi AC tại C cắt nhau tại K. gọi M là trung điểm cua BC. chứng minh: ba điểm H,M,K thẳng hàng