Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. AH là đường cao của tam giác ABC. Chứng minh rằng: a. BI=AH; EK = HC; b. BC = DI + EK.:
Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
Cho tam giác ABC, vẽ ra phía ngoài của tam giác 2 tam giác vuông cân ABD và ACE( ABD=ACE=90o ) vẽ đường cao AH (H thuộc BC). CMR 3 đường thẳng AH;BE;CD cùng đi qua một điểm
Cho tam giác ABC đường cao AH vẽ phía ngoài tam giác các tam gicá cân ABD và ACE. Kẻ DM và EN vuông góc vs đường thẳng HA. Chứng minh DM=EN
Cho tam giác ABC, đường cao AH,(H thuộc BC). Vẽ ra phía ngoài tam giác ABC của tam giác vuông cân ở A là tam giác ABD và tam giác ACE .Gọi điểm M là giao điểm của đường thưởng AH và BE. Gọi i là hình chiếu vuông góc của điểm D lên AH . Chứng minh rằng
a. Góc HDA= góc BAH
b.tam giác AHD=tam giác BHA
c. MD=ME
sos giúp e với ạ :(
Cho tam giác ABC đường cao AH, vẽ ra phía ngoài của tam giác các tam giác vuông cân ABD (vuông cân tại B),ACE(vuông cân C).Qua C kẻ vuông góc với BE cắt AH ở K
a) CMR: Tam giác AKC=CBE ; CD vuông góc BK
b) CMR: 3 đường thẳng AH, BE, CD đồng quy
Cho tam giác ABC có đường cao AH. Vẽ phía ngoài tam giác ấy các tam giác vuông cân ABD,ACE (góc ABD= góc ACE=90)
a. Qua điểm C vẽ đường thẳng vuông góc CE cắt đường thẳng HA tại K. Chứng minh : CD vuông góc BK
b. CM 3 đương thẳng AH,BE,CD đồng quy
Cho tam giác ABC có đường cao AH. Vẽ phía ngoài tam giác ấy các tam giác vuông cân ABD,ACE (góc ABD= góc ACE=90)
a. Qua điểm C vẽ đường thẳng vuông góc CE cắt đường thẳng HA tại K. Chứng minh : CD vuông góc BK
b. CM 3 đương thẳng AH,BE,CD đồng quy