-Nhìn bài y hệt như bài lớp 8.
-Có: \(AM+MC=AC\) ; \(AM=\dfrac{1}{2}\times MC\Rightarrow MC=2\times AM\)
\(AM+MC=AC\Rightarrow AM+2\times AM=AC\Rightarrow3\times AM=AC\Rightarrow AM=\dfrac{1}{3}\times AC\)
\(\dfrac{S_{APM}}{S_{ABM}}=\dfrac{AP}{AB}=\dfrac{1}{2}\) ; \(\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AM}{AC}=\dfrac{1}{3}\).
\(\Rightarrow\dfrac{S_{AMN}}{S_{AMB}}\times\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{1}{2}\times\dfrac{1}{3}\)
\(\Rightarrow\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{1}{6}\)
\(\Rightarrow S_{AMN}=\dfrac{1}{6}\times S_{ABC}=\dfrac{1}{6}\times180=30\left(cm^2\right)\).
-Có \(BN+NC=BC\) ; \(BN=NC\) nên \(BN+BN=BC\Rightarrow2\times BN=BC\Rightarrow BN=\dfrac{1}{2}\times BC\)
-Có P là trung điểm của AB nên \(BP=\dfrac{1}{2}\times AB\)
\(\dfrac{S_{BPN}}{S_{BPC}}=\dfrac{BN}{BC}=\dfrac{1}{2}\).
\(\dfrac{S_{BPC}}{S_{ABC}}=\dfrac{BP}{AB}=\dfrac{1}{2}\).
\(\Rightarrow\dfrac{S_{BPN}}{S_{BPC}}\times\dfrac{S_{BPC}}{S_{ABC}}=\dfrac{1}{2}\times\dfrac{1}{2}\)
\(\Rightarrow\dfrac{S_{BPN}}{S_{ABC}}=\dfrac{1}{4}\)
\(\Rightarrow S_{BPN}=\dfrac{1}{4}\times S_{ABC}=\dfrac{1}{4}\times180=45\left(cm^2\right)\)
\(S_{MPNC}=S_{ABC}-S_{APM}-S_{BPN}=180-30-45=105\left(cm^2\right)\)
-Lớp 5 làm gì biết dấu nhân được ẩn trong phép tính \(\dfrac{1}{2}MC\) ?