Xét Δ vuông ABH ta có :
\(tanB=\dfrac{BH}{AH}\Rightarrow BH=AH.tanB\)
Xét Δ vuông ACH ta có :
\(tanC=\dfrac{CH}{AH}\Rightarrow CH=AH.tanC\)
Ta lại có :
\(BC=BH+CH\)
\(\Leftrightarrow2AH=AH.tanB+AH.tanC\left(AH=\dfrac{1}{2}BC\right)\)
\(\Leftrightarrow2AH=AH.\left(tanB+tanC\right)\)
\(\Leftrightarrow tanB+tanC=2\)
\(\Leftrightarrow tanC=2-tanB=2-tan75^o=2-3,73=-1,73\)
\(\Leftrightarrow C=-60^o\) (theo góc lượng giác)