cho tam giac ABC có BC=4cm trên cạnh AB lấy điểm D và E sao cho AD=BE . qua D và E lần lượt vẽ các đường thăng song song với BC cắt Ac theo thứ tự ở G và H tình tổng DG+EH
1
Cho tam giác ABC, có BC = 4cm. Trên cạnh AB lấy các điểm D và E sao cho AD = BE. Qua D và E lần lượt vẽ các đường thẳng song song với BC, cắt AC theo thứ tự ở G và H. Tính Tổng DG + EH
2
Cho tam giác ABC, trực tâm H. Gọi M là trung điểm của BC, N là trung điểm của AC. Đường vuông góc với BC tại M và đường vuông góc với AC tại N cắt nhau ở O.
a) Trên tia đối của tia OC lấy điểm K sao cho OK = OC. CMR AHBK là hình bình hành
b) CMR OM = 1/2 AH
cho hình bình hành ABCD. O là giao điểm cho tam giác ABC trên cạnh AB lấy các điểm D và E sao cho AD= BE qua D và E vẽ các đường thẳng song song với BC chúng cắt AC theo thứ tự ở M và N. qua N kẻ NK // AB
a) chứng minh tứ giác BENK là hình bình hành
b) chứng minh EN=BK, DM=KC
c) DM+EN=BC
Bài 14: Trên cạnh BC của một tam giác ABC, lấy các điểm E và F sao cho BE = CF. Qua E và F, vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. Chứng minh rằng EG + FH = AB.
Cho tam giác ABC có cạnh BC = m. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC theo thứ tự ở M và N. Tính độ dài các đoạn thẳng DM và EN theo m
Trên cạnh BC của tam giác ABC lấy điểm E và F sao cho BE=CF. Qua E,F vẽ các đường thẳng song song với BA,chúng cắt cạnh AC theo thứ tự ở G và H. CMR:
EG+FH=AB
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
1. Cho tam giác ABC, điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song AB và AC chúng cắt AB,AC theo thứ tự ở E và F. Chứng minh hệ thức: AE/AB+AF/AC=1
2. Cho tam giác ABC, 1 đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D và E. Qua C kẻ đường thẳng song song với EB cắt AB ở F. Chứng minh hệ thức AB2=AD*AF
3.Cho tam giác ABC( AB<AC) đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. Chứng minh rằng:
a. AE=AK
b. DK=CE
Cho tam giác ABC có cạnh BC = m. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC cắt cạnh AC theo thứ tự ở M và N. Tính độ dài các đoạn thẳng DM, EN theo m