a: Xét ΔBAE và ΔBCE có
BA=BC
AE=CE
BE chung
Do đó: ΔBAE=ΔBCE
a: Xét ΔBAE và ΔBCE có
BA=BC
AE=CE
BE chung
Do đó: ΔBAE=ΔBCE
Cho tam giác ABC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a, Chứng minh: tam giác ABM = tam giác ECM
b, AB // CE
c, AC = BE
d, Gọi O; F lần lượt là trung điểm của AB; CE. Chứng minh ba điểm O; M; F thẳng hàng
Cho tam giác ABC cân tại A. Lấy M thuộc cạnh AB và N thuộc cạnh AC sao cho AM=AN.
a) Chứng minh rằng tam giác AMN cân
b) Chứng minh MN//BC
c) Gọi I là giao điểm của CM và BN. Chứng minh 2 tam giác BIC và MIN cân
d) Gọi E là trung điểm MN, F là trung điểm BC. Chứng minh A,E,F,I thẳng hàng
Cho tam giác ABC có AB= 9cm, AC=12cm, BC=15cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AD tại F.
a. Chứng minh tam giác ABC là tam giác vuông
b. Chứng minh DE vuông góc với BC rồi so sánh AD và DC
c. Gọi M, N lần lượt là trung điểm của AE và CF. Chứng minh ba điểm M,D,N thẳng hàng
giúp mk câu c zới
Cho tam giác ABC có A=90°. Trên cạnh BC lấy E sao cho BE=BA. Tia phân giác của B cắt AC tại D. a) Gọi F là giao điểm của AB và DE. Chứng minh AF=CE. b) Gọi I là trung điểm của CF. Chứng minh ba điểm B,D,I thẳng hàng c) Chứng minh BAE=EAC+ECA
Cho tam giác ABC có AB=AC. Gọi M là trung điểm của cạnh BC.
A) Chứng minh tam giác ABM= tam giác ACM
B) Chứng minh AM vuông góc BC
C) Trên BA lấy E, trên CA lấy F sao cho BE=CF. Chứng minh tam giác EBC= tam giác FBC
D) Chứng minh EF//BC
Cho tam giác ABC, trung tuyến AM và trọng tâm G. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF.
a) Chứng minh G là trọng tâm tam giác AEF.
b) Gọi N là trung điểm của AF. Chứng minh ba điểm E, G, N thẳng hàng.
c) Gọi H là trung điểm của GA, I là trung điểm GE. Chứng minh IH // MN và IH = MN.
cho tam giác ABC,M là trung điểm của AB. Trên tia đối của tia MC lấy điểm N sao cho MC =MN
A. chứng minh rằng NB//AC
B. trên tia đối tia BN lấy điểm E sao cho BN=BE. Chứng minh: AB=EC
C. gọi F là trung điểm của BC. Chứng minh A,E,F thẳng hàng
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng