Cho tam giác abc có ba góc nhọn vẽ đoạn thẳng AD vuông góc với AB và AD = AB (D và C nằm về hai phía với đối với AB). Vẽ đoạn thẳng AE vuông góc AC, AE = AC ( E và B nằm về 2 phía đối với AC). Kẻ AH vuông góc với BC tại H. Kẻ DI và EK cùng vuông góc với đường thẳng AH (I và K thuộc đường thẳng AH).
Chứng minh rằng :
a) Tam giác ABH = Tam giác DAI.
b) DI = EK
c) Gọi M là giao điểm của DE và KI. Chứng minh rằng M là trung điểm của DE và KI.
cho mình thời gian đến tối nay nha lát nữa mình bận mình hứa mình sẽ giải
Mình làm tắt nha
a, Ta có: góc ADI = góc HAB (cùng phụ vs DAI)
=> tam giác ABH = tam giác DAI (ch+gn)
b,Tam giác ABH = tam giác DAI (phần a)
=>DI=AH (1)
Ta có: góc KEA = góc HAC (cùng phụ vs KAE)
=>tam giác KEA = tam giác HAC (ch+gn)
=> EK=AH (2)
Từ 1 và 2 => DI=EK
c, Ta có: góc DMI = góc KME (đối đỉnh)
=> góc MDI = góc MEK
=> Tam giác MDI = tam giác MEK (cgv+gn)
=>MI=MK và MD=ME
=> M là trung điểm của DE và KI
a, Ta có:
góc ADI = góc HAB (cùng phụ vs DAI)
=> tam giác ABH = tam giác DAI (ch+gn)
b,Tam giác ABH = tam giác DAI (phần a)
=>DI=AH (1)
Ta có:
góc KEA = góc HAC (cùng phụ vs KAE)
=>tam giác KEA = tam giác HAC (ch+gn)
=> EK=AH (2)
Từ 1 và 2 => DI=EK
c, Ta có:
góc DMI = góc KME (đối đỉnh)
=> góc MDI = góc MEK
=> Tam giác MDI = tam giác MEK (cgv+gn)
=>MI=MK và MD=ME
=> M là trung điểm của DE và KI