Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
Cho tam giác ABC nhọn(AB<AC), vẽ hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE
b)Chứng minh: góc ADE=góc ABC
c) Gọi K là giao điểm của AH và BC. CHứng minh : BD là tia phân giác của góc EDK
d) Chứng minh: BH.BD vuông góc CH.CE=BC.BC
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H ( D thuộc AC, E thuộc AB).
a) Chứng minh 2 tam giác BHE và CHD đồng dạng
b) Chứng minh AB.AE=AC.AD
c) Chứng minh góc AED = góc ACB
Bài 4: (3 điểm)
Cho tam giác ABC có ba góc nhọn (AB < AC), hai đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Chứng minh ABD đồng dạng với ACE. Từ đó suy ra AB.AE = AC.AD
2) Chứng minh ADE đồng dạng với ABC
3) Gọi I là giao điểm của DE và CB, M là trung điểm của BC. Chứng minh: ID.IE = IM2 – MC2.
4) Biết BC = 15, tính giá trị biểu thức P = BH.BD + CH.CE.
Cho tam giác ABC có 3 góc nhọn, các đường cao BD,CE của tam giác cắt nhau tại H. Chứng minh rằng :
a) Tam giác ABD đồng dạng với tam giác ACE.
b) HE.HC=HD.HB.
c) Kẻ đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tạ K. Gọi M là trung điểm của BC. Chứng minh: Ba điểm H,M,K thẳng hàng.
Cho tam giác ABC có 3 góc nhọn và AB<AC. Vẽ 2 đường cao BD và CE
a) Chứng minh: Tam giác ABD đồng dạng tam giác ACE. Suy ra AB.AE = AC.AD
b) Chứng minh: Tam giác ABE đồng dạng tam giác ABC
c) Tia DE và CB cắt nhau tại I. Chứng minh: Tam giác IBE đồng dạng tam giác IDC
d) Gọi O là trung điểm của BC. Chứng minh ID.IE = OI2 - OC2
Cho tam giác ABC có 3 góc nhọn và AB < AC . Vẽ hai đường cao BD và CE
a, CM : Tam giác ABD đồng dạng với tam giác ACE . Suy ra AB.AE=AC.AD
b, CM ; tam giác ADE đồng dạng tam giác ABC
c, Tia CE và CB cắt nhau tại I . Chứng minh tam giác IBE đồng dạng với tam giác IDC
d, Gọi O là trung điểm của BC . Chứng minh ID.IE = OI2−OC2
Cho tam giác ABC nhọn, các đường cao BD, CE. Tia phân giác của các góc A B D ^ v à A C E ^ cắt nhau tại O, và lần lượt cắt AC, AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H: Chứng minh rằng:
a) BN ^ CM;
b) Tứ giác MNFIK là hình thoi
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK