Cho tam giác ABC có ba góc đều nhọn. Gọi O là trung điểm của BC, trên
tia đối của OA lấy điểm K sao cho OK = OA.
a) Chứng minh: tam giác AOB = tam giác KOC
b) Kẻ AM ⊥ BC tại M, KN ⊥ BC tại N. Chứng minh: MO = NO
c) Trên cạnh AB lấy H và trên cạnh KC lấy I sao cho BH = CI. Trên cạnh AC lấy D và trên
cạnh KB lấy G sao cho KG = AD. Chứng minh: IH, DG cắt nhau tại trung điểm mỗi đường.
a: XétΔAOB và ΔKOC có
OA=OK
\(\widehat{AOB}=\widehat{KOC}\)
OB=OC
Do đó: ΔAOB=ΔKOC
b: Xét ΔAOM vuông tại A và ΔKON vuông tại N có
OA=OK
\(\widehat{AOM}=\widehat{KON}\)
Do đó: ΔAOM=ΔKON
Suy ra; MO=NO