Cho tam giác ABC có góc B - C = \(\alpha\), tia phân giác của góc A cắt
BC ở D .
a, Tính ADC , ADB .
b, Vẽ AH vuông góc với BC , tính HAD .
Cho tam giác ABC nhọn. Vẽ AH vuông góc BC tại H. Tia phân giác góc A cắt BC tại D. Tính góc DAH biết \(\widehat{A}=72^o;\widehat{B}=54^o\)
Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D.
Chứng minh:2 tam giác ADB=ADC
Kẻ DH vuông góc với AB (H thuộc AB), DK vuông góc với AC (K thuộc AC)
Chứng minh DH=DK
Biết góc A=4 nhân góc B. Tính số đo các góc tam giác ABC
Bài 1:
Cho tam giác ABC vuông tại A, AB= 3cm, Ac= 4cm. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) Tính BC?
b) Chứng minh tam giác ABE= tam giác HBE
Bài 2:
Cho tam giác ABC vuông tại A, góc ABC= 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) So sánh các cạnh của tam giác ABC
b) Chứng minh tam giác ABE = tam giác HBE
c) Qua H vẽ HK song song BE( K thuộc AC). Chứng minh tam giác EHK đều
1) Cho tam giác ABC vuông ở A ,phân giác CD .Gọi H là hình chiếu của B trên đường thẳng CD.Trên CD lấy E sao cho H là trug điểm của DE.Gọi F là giao điểm của BH và CA.Chứng minh rằng :
a) Góc CEB =góc ADC và góc EBH = góc ACD
b) BE vuông góc BC
c)DF // BE
Bài 2 :Cho tam giác ABC có góc A = 120 độ ,phân giác AD.Kẻ DE vuông góc AB, DF vuông góc AC. Trên đoạn EB và FC lấy điểm I và K sao cho EI =FK .
a)C/m :tam giác DEF đều b) chứng minh tam giác DIK cân
c) Từ C kẻ đường thẳng // với AD cắt tia BA ở M . Chứng minh tam giác MAC đều. Tính AD biết CM=m ,CF=n .
1) Cho tam giác ABC vuông ở A ,phân giác CD .Gọi H là hình chiếu của B trên đường thẳng CD.Trên CD lấy E sao cho H là trug điểm của DE.Gọi F là giao điểm của BH và CA.Chứng minh rằng :
a) Góc CEB =góc ADC và góc EBH = góc ACD
b) BE vuông góc BC
c)DF // BE
Bài 2 :Cho tam giác ABC có góc A = 120 độ ,phân giác AD.Kẻ DE vuông góc AB, DF vuông góc AC. Trên đoạn EB và FC lấy điểm I và K sao cho EI =FK .
a)C/m :tam giác DEF đều b) chứng minh tam giác DIK cân
c) Từ C kẻ đường thẳng // với AD cắt tia BA ở M . Chứng minh tam giác MAC đều. Tính AD biết CM=m ,CF=n .
Cho tam giác ABC có A = \(\alpha\) . Các tia phân giác của các góc B và C cắt nhau ở I . Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại K . Tia phân giác của góc B cắt tia phân giác của góc ngoài đỉnh C ở E . Tính số đo các góc BIC , BKC , BEC theo \(\alpha\)
Tam giác ABC vuông tại A, AB.AC; AH, vuông góc với BC, HI vuông góc với AB, HG vuông góc với AC, IG cắt BC tại D, M là trung điểm của BC. CMR
a) AH=IG; AI.AB=AG.AC
b) DG.DI=DC.DB; AM vuông góc với DG
c) Cho N di động trên BC. Vẽ ra phía ngoài tam giác ABC hai tam giác đều BNE và CNF. Gọi P và Q là trung điểm của BF và CE. CMR tam giác PNQ đều
Tam giác ABC có góc ACB = 30 độ , Vẽ AH vuông góc với BC tại điểm H : AH = 1/2 BC , D là trung điểm của AB
a, C/m: Tam giác ABC cân
b, Tính góc BCD