Một tam giác ABC có ba cạnh AB = 4, BC = 6, AC = 5 và một điểm bất kỳ P. Giá trị nhỏ nhất của PA + 2PB + 3PC là bao nhiêu?
Cho tam giác ABC có AB< BC< CA, tia phân giác của các góc BAC, ABC và ACB cắt nhau tại I. Biết góc AIB = x độ, góc BIC = y độ, góc AIC = z độ và x, y, z là 3 số tự nhiên liên tiếp. Tính góc BAC
Please !
Cho tam giác ABC cân tại A, đường cao AH và trung tuyến BK cắt nhau tại G. Tia CG cắt AB tại I
Cho tam giác ABC cân tại A; đường cao AH và trung tuyến BK cắt nhau tại G. Tia CG cắt AB tại I
a, Chứng minh tam giác AIG = tam giác AKG
b, Biết AH = 18 cm, BC = 16cm. Tính độ dài đoạn thẳng GI
c, Chứng minh IK // BC
Cho tam giác ABC, trên tia đối của tia BC lấy điểm M sao cho MB = AB, trên tia đối của tia CB lấy điểm N sao cho NC = AC. Qua M kẻ đường thẳng song song với AB. Qua N kẻ đường thẳng song song với AC. Hai đường thẳng đó cắt nhau tại P. Chứng minh:
a) MA, NA lần lượt là tia phân giác của P M B ^ , P N C ^
b) Tia PA cắt BC tại K. Chứng minh PA là tia phân giác của M P N ^ , từ đó suy ra AK là tia phân giác của B A C ^
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh:OA^2+OP^2+OH^2+OK^2=PA^2.
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh: 2 2 2 2 2 OA OP OH OK PA .
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh:OA^2+OP^2+OH^2+OK^2=PA^2.
Cho tam giác ABC (AB < AC). M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Kẻ PH vuông góc với AB, kẻ PK vuông góc với AC.
1, Chứng minh : PB = PC và BH = CK.
2, Chứng minh ba điểm H,M,K thẳng hàng.
3, Gọi O là giao điểm của PA và HK. Chứng minh : \(OA^2+OP^2+OH^2+OK^2=PA^2\)
Cho Tam giác ABC có góc A-B=90, hạ AH vuông góc với BC. Trên nửa mặt phẳng bờ AB có chứa tia AC, dựng tia Ax vuông góc với AB, tia Ax cắt BC tại D. Các tia phân giác của các góc BHA và ADH cắt nhay tại P
Chứng minh : PA vuông góc với AC, PA vuông góc với PD
Cho tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G. Biết AG = BG = CG. Chứng minh tam giác ABC đều