Cho tam giác ABC có M là đường trung tuyến của tam giác AMB cắt AB tại D tia phân giác của A = C cắt AC tạI E . Biết AM = 4cm , BC =12cm
a, tính \(\dfrac{AD}{DB}\)
b, so sánh \(\dfrac{AD}{DB}\)và \(\dfrac{AE}{EC}\)
c, chứng minh DE// BC
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm .Kẻ đường phân giác BD của góc ABC (D thuộc AC ) a)Tính BC, AD, DC b)Trên BC lấy điểm E sao cho CE= 4cm. Chứng minh tam giác CED đồng dạng với tam giác CAB c)Chứng minh ED= AD
Cho tam giác ABC có BC= 9cm, AC= 10cm. Lấy D trên cạnh BC sao cho BD= 3cm. Lấy G và H trên AC sao cho AG=CH=4CM.
a) Chứng minh DH// BG
b) AD cắt BG tại E. Chứng minh AE=2ED
c) Gỉa sử DH= 5cm. Tính số đo đoạn BG, EB
Cho tam giác ABC có AD là tia phân giác góc BAC (D thuộc BC). Lấy E là điểm bất kì trên đoạn AB, qua E kẻ đường thẳng // với BC cắt AD và AC lần lượt ở I và F. Chứng minh: IE/EB = IF/FC.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3: Cho tam giác ABC có góc ZA= 135°. Đường vuông góc với AC tại A cắt BC ở D,
đường vuông góc với AB tại A cắt BC ở E.
a) Chứng minh AD là đường phân giác của góc EAB;
b) Chứng minh BD. EC = CB . ED
c) Cho DB =15 cm , DC = 5cm. Tính độ dài AD, AC.
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC
cho tam giác ABC vuông tại A , có AB = 12cm , AC = 16cm
a/ tính độ dài cạnh BC , b. phân giác góc B cắt cạnh AC tại D . tính độ dài AD , DC
c / qua trung điểm M của AC vẽ đường thẳng song song với DB cắt BC và AB lần lượt tại E và F , Cmr : AF=CE
d/ phân giác trong của góc C cắt BD tại I , gọi N là trung điểm của BC , chứng minh góc NIB =90 độ
moi người giải giúp câu c,d
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 5cm, AD là tia phân giác, vẽ đường vuông góc với DC cắt AD tại E (E thuộc AC).
a, Chứng minh tam giác ABC đồng dạng tam giác DEC
b, Tính BC? BD?
c, Tính độ dài AD?
d, Tính diện tích tam giác ABC? Diện tích tứ giác ABDE?
*Mọi người giúp mình với nha ^^