Cho tam giác ABC có AD là tia phân giác của góc BAC . Kẻ DE ; DF lần lượt vuông góc với AB , AC . BF cắt CE tại O . Chứng minh AO vuông góc với BC
cho tam giác ABC vuông tại A. Phân giác góc BAC cắt cạnh BC tại D kẻ DE vuông góc với AB tại E, kẻ DF vuông góc với AC tại F a, chứng minh AEDF là hình vuông.
b,Gọi M,N lần lượt là trung điểm của BD và CD chứng EMD=2.ABC và EM//FN.
c,cho AB=6cm,AC=8cm. tính diện tích hình vuông AEDF.
Cho tam giác ABC vuông tại A(AB<AC), tia phân giác góc BAC cắt BC tại D, kẻ DE vuông góc với AB, DF vuông góc với AC. Kẻ đường cao AH của tam giác ABC.
a) Chứng minh AEDF là hình vuông
b) Tính góc EHF
c) Gọi I là giao điểm của AH và EF. Chứng minh góc AIF bằng góc ADB
cho tam giác abc vuông tại a(ab<ac), kẻ đường cao ah. gọi d,e lần lượt là hình chiêu của h trên ab,ac. đường thẳng qua a vuông góc với de cắt bc tại 0
a) chứng minh o là trung điểm của bc
b) kẻ đường thẳng vuông góc với ao tại a cắt bc tại k. chứng minh ab là phân giác góc kah
Bài 1: Cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Bài 2: Cho tam giác ABC với 3 góc nhọn, trong đó góc A=30 độ. Lấy D là điểm bất kì trên BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC, EF cắt AB, AC theo thứ tự M,N. a) Chứng minh tam giác AEF đều b) Chứng minh DA là phân giác của góc MDN c) DE, DF lần lượt cắt AB, AC tại P,Q chứng minh MN//PQ
Cho tam giác ABC vuông tại A có AB=6cm; AB=8cm. Tia phân giác của góc BAC cắt BC tại M. Đường thẳng đi qua M và vuông góc với BC lần lượt cắt AC tại H và BA tại K. Tia BH cắt KC tại N. Chứng minh tam giác BNC vuông cân.
Cho tam giác ABC có AB=13cm,AC=26cm.Đường phân giác trong của góc A cắt cạnh BC tại D.Từ B và C lần lượt kẻ các đường vuông góc với đường thằng AD và cắt AD lần lượt tại M và N.
a)Chứng minh tam giác BMD đồng dạng với tam giác CND
b)Chứng minh:AC.AM=AB.AN
c)Tính tỉ số BM/CN
Cho tam giác ABC vuông tại A( AB<AC), đường cao AH. D,E lần lượt là hình chiếu của H trên AB, AC. Đường thẳng qua A vuông góc với DE cắt BC tại O
a) O là trung điểm của BC
b) Kẻ đường thẳng vuông góc với OA tại A cắt BC tại K. Chứng minh AB là phân giá của góc KAH
c) AB^2=BH.BC, AD.BD+AE.EC<OA^2
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC