Cho tam giác ABC có dướng phân giác AD, đường cao CH và đường trung tuyến BM giao nhau tại I. Vẽ MN song song với AB ( N thuộc HC). Tính tỉ số cosB/cosA theo các cạnh của tam giác ABC
cho tam giác ABC , đường phân giác AD , đường cao CH , trung tuyến BM cắt nhau tại I . C/m cosA/cosB=BC/AB
cho tam giác ABC, phân giác AD và đường cao CH và trung tuyến BM gặp nhau tạ 1 điểm
Chứng minh AB. cosA = BC. cosB
Cho tam giác ABC có đường cao CH, phân giác AD, trung tuyến BM gặp nhau tại điểm O. Kẻ MN vuông góc với HC tại N. Từ A kẻ đường thẳng vuông góc với AC tại A, đường thẳng đó cắt BC tại P. Chứng minh NM/BH=AM/AB
Cho tam giác ABC nhọn có AB < AC, đường cao AD. Đường tròn tâm ),đường kính BC. Vẽ AM và AN là hai tiếp tuyến của đường tròn.
a. Chứng minh 5 điểm M, N, O, D. A cùng thuộc một đường tròn
b. Gọi MN cắt AD tại H. Chứng minh H là trực tâm tam giác ABC
Cho tam giác ABC vuông tại A đường cao AH và trung tuyến BM cắt nhau tại O , CO cắt AB tại D . Qua A vẽ d // BC ,D cắt CD, BM tại E và F.
a)\(\frac{HB}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)
b) Giả sử AC=BH. CM : CD là phân giác góc ACD
Cho tam giác ABC vuông tại A ( AB<AC ), có đường cao AH và O là trung điểm của cạnh BC.Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N.OA và MN cắt nhau tại D.
a) Chứng minh tứ giác BMNC nội tiếp
b) \(\frac{1}{AD}=\frac{1}{HB}+\frac{1}{HC}\)
c) Cho AB=3 và AC=4.Tính bán kính đường tròn ngoại tiếp tam giác BMN.
Cho tam giác ABC, phân giác AD, đường cao CH, trung tuyến BM gặp nhau tại một điểm. Chứng minh AB. cos A = BC. cos B
Từ 1 điểm A ở ngoài đường tròn vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc BAC cắt BC;BD lần lượt M và N. Vẽ dây BF vuông góc với MN cắt MN tại H, cắt CD tại E. Chứng minh:
a, TAm giác ABE cân
b, BF là tia phân giác của góc CBD
c,FD^2=FE.FB