Tam giác ABC có AC>AB.E thuộc CA sao cho CE=AB.Các đường trung trực của cạnh BE và AC cắt nhau tại O.CMR tam giác AOB=tam giác COE b) AO là phân giác góc A
Cho tam giác ABC co góc A=120 do.Tren tia phan giác cua góc A,lay điểm E sao cho AE=AB+AC.Chung minh rang tam giác BCE la tam giác đều ?
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB, BD và CE cắt nhau tại H. Chứng minh:
a, Tam giác ABD = tam giác ACE
b, Tam giác BHC cân
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
Cho tam giác ABC nhọn có góc A bằng 600.Phân giác góc ABC cắt AC tại D, phân giác góc ACB cắt AB tại E. BC và CE tại I.
a, Tính số đo góc BIC.
b, Trên cạch BC lấy điểm F sao cho BF=BE. Chứng minh tam giác CID = tam giac CIF
c, Trên tia IF lấy điểm M sao cho IM= IB+BE. Chứng minh tam giác BCM là tam giác đều
Cho tam giác ABC Vuông tai A co AB=3 cm, BC=5cm. Ve 2 đuông trung tuyến AN va CM, trên tia AN lay điểm D sao cho N la trung điểm AD.
a. Cm AC=BD va tinh do dai đoạn thang BD
B. Cmtam giác MDC can
c. MD cắt BC tai H, gọi I la trung điểm cua ÁC, DI cát BC tai K. Cm tam giác HBD= tam giác KCA
D. Tinh độ dài đoạn thang AH
Giúp minh voi
Cho tam giác ABC cân tại A (A là góc nhọn). Kẻ BD vuông AC ( D thuộc AC) , CE vuông AB ( E thuộc AB), BD và CE cắt nhau tại H
a) CHứng minh BD = CE
b) tam giác BHC cân
c) AH là đường trung trực của BC
d) trên tia BD lấy K sao cho D là trung điểm BK . So sánh góc ECB và góc DKC
Tam giác ABC có AC > AB. Trên tia CA lấy E : CE = AB. Gọi O là giao điểm 2 trung trực BE và AC
a) Chứng minh Δ AOB = Δ COE
b) Chứng minh AO phân giác góc A