a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/DC=AB/AC=2/3
=>3DB-2DC=0
mà DB+DC=18
nên DB=7,2cm; DC=10,8cm
b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có
góc BDH=góc CDK
=>ΔBDH đồng dạng với ΔCDK
=>BH/CK=BD/CD=2/3
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/DC=AB/AC=2/3
=>3DB-2DC=0
mà DB+DC=18
nên DB=7,2cm; DC=10,8cm
b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có
góc BDH=góc CDK
=>ΔBDH đồng dạng với ΔCDK
=>BH/CK=BD/CD=2/3
Cho tam giác ABC nhọn ( AB > AC ) có đường phân giác AD. Kẻ BH vuông góc với AD tại H, CK vuông góc với AD tại K.
a) Chứng minh tam giác BHD đồng dạng tam giác CKD
b) Chứng minh AB.AK=AC.AH
c) Chứng minh DH/DK=BH/CK=AB/AC
Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc BAC cắt đường trung trực của BC tại D. Kẻ DH vuông góc với AB, DK vuông góc với AC
a) Tứ giác AHDK là hình gì? Vì sao?
b) Chứng minh BH=CK
c) Giả sử AC= 8cm; BC=10cm. Gọi M là trung điểm BC. Tính diện tích tứ giác BHDM
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC).
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC.
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC
Cho tam giác abc vuông tại a có ab=12cm, bc= 13cm a. Tính ac b. Tia phân giác của góc b cắt ac ở d. Tính ad, cd c. Kẻ dh vuông góc với bc(h thuộc bc). Tính dh d. Kẻ hi vuông góc với ab( i thuộc ab). Tính diện tích tứ giá
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, AD là tia phân giác của góc BAC (D ϵ BC) a, Tính tỉ số DB/DC và độ dài các đoạn thẳng BC, DB, DC b, TỪ D kẻ DE vuông góc với AB tại E (E ϵ AB). Tính độ dài AE, DE và diện tích tứ giác AEDC c, Gọi O là giao điểm của AD và CE. QUa O kẻ đường thằng song song với AC cắt BC và AB lần lượt tại M và N. Chứng minh rằng OM = ON
Cho tam giác ABC ( AB<AC) có đường phân giác AD. Hạ BH, CK vuông góc với AD.
a) Chứng minh: tam giác BHD đồng dạng với tam giác CKD
b) Chứng minh: AB.AK=AC.AH
c) Chứng minh:\(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d) Qua trung điểm M của cạnh BC kẻ đường thẳng song song với AD và cắt cạnh AC tại E, cắt tia BA tại F. Chứng minh: BF = CE
Cho tam giác ABC vuông tại A, tia phân giác góc A cắt cạnh BC tại D, AD = 9cm,BC = 15cm
a)Tính \(\frac{DB}{DC}\)
b) Kẻ đường thẳng qua D,vuông góc với AC, cắt AC tại E.Chứng minh tam giác EDC ~ tam giác ABC.Tìm tỉ số đồng dạng
c) Tính diện tích của tam giác EDC
cho tam giác ABC vuông tại A( AB<AC). Phân giác góc BAC cắt đg trung trực của BC ở điểm D kẻ DH vuông góc vói AB, DK vuông góc với AC.
1, tứ giác AHDK là hình j? C/m
2, C/m: BH=CK
3, Giả sử AC=8cm và BC= 10cm. gọi M là trung điểm của BC. tính diện tích của tứ giác BHDM.
Cho tam giác abc vuông tại A có ab=3cm,bc=5cm.Tia phân giác của góc abc cắt ac tại d.a)tính ac,ad? b) vẽ tia Cx vuông góc với tia BD tại E và tia CE cắt AB tại F .CM: tam giác abd đồng dạng với tam giác ebc.c) tính tỉ số diện tích của tam giác abd và tam giác ebc