Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>AD=AE
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>AD=AE
Cho tam giác ABC, trung tuyến AM. Trên nửa mf ko chứa đỉnh C có bờ là AB vẽ tia Ax vuông góc vs AB trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mf ko chứa đỉnh B có bờ là AC vẽ tia Ay vuông góc vs AC trên tia đó lấy điểm E sao cho AE=AC.
CMR:
DE=2AM
Cho tam giác ABC có các góc đều nhọn và AB < AC. Tia phân giác của góc A cắt BC tại D. Vẽ BE vuông góc với AD tại E . Tia BE cắt AC tại F :
a, Chứng minh: AB= AF
b, Qua F vẽ đường thẳng với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh DH = KF và DH // KF
c, Chứng minh góc ABC lớn hơn góc C
cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC), (E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng :
a) BD=CE
b) Tanm giác OEB=ODC
c)AO là phân giác của góc BAC.
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
cho tam giác abc cân tại a( ab>ac) kẻ bd vuông góc với ac, d thuộc ac. ce vuông góc với ab, e thuộc ab. gọi h là giao điểm của bd và ce.
c) ah>hc
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
( Giờ mình chỉ caàn làm phần d nữa thôi, mấy bạn giúp mình với)
Bài 1:
Cho tam giác ABC vuông tại A, AB= 3cm, Ac= 4cm. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) Tính BC?
b) Chứng minh tam giác ABE= tam giác HBE
Bài 2:
Cho tam giác ABC vuông tại A, góc ABC= 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC)
a) So sánh các cạnh của tam giác ABC
b) Chứng minh tam giác ABE = tam giác HBE
c) Qua H vẽ HK song song BE( K thuộc AC). Chứng minh tam giác EHK đều
Cho tam giác ABC, có BD vuông góc với AC tại D, CE vuông góc với AB tại E. H là giao điểm của BD vả CE, M là trung điểm của BC. Trên tia đối của tia MH lấy điểm K sao cho MH=MK
a,Chứng minh tam giác BMH=tam giác CMK
b,C/m CK vuông góc KC
c,Cho HI vuông góc BC,trên tia HI lấy điểm G sao cho HI=HG. C/m GC=BK