Cho tam giác ABC có AB>AC , từ trung điểm M của BC vẽ đường thẳng vuông góc với phân giác góc A, cắt phân giác tại H, cắt AB , AC ở E và F. CM:
a) BE=CF
b) AE=(AB+AC):2
BE=(AB-AC):2
c) Góc BME=(góc ACB-góc B):2
Cho ∆ABC có AB>AC. Từ trung điểm M của BC vẽ một đường vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng: a) BE = CF b) AE=AB+AC/2 , BE=AB-AC c) góc BME= (góc ACB - góc B )/2 🙏 Giúp mình với 🙏
Cho tam giác ABC có AB > AC. Từ trung điểm M của Bc vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng:
a) BE = CF
b) AB + AC AB - AC
AE = ______, BE = ______
2 2
c) ACB - B
Góc BME= ______
2
Mọi người giúp mình với ạ, mình đang cần gấp.
cho tam giác ABC có AB > AC M là trung điểm của BC (MB = MC) từ M vẽ đường thẳng vuông góc với tia phân giác của góc A cắt tia phân giác tại H cắt AB,AC lần lượt tại E và F. CMR:
a) BE = CF
b) AE = AB+AC/2
BE = AB-AC/2
c) góc BME = GÓC ACB - B/2
Cho tam giác ABC, AB>AC từ trung điểm M của BC vẽ 1 đường thẳng vuông góc với tia phân giác của góc A , cắt tia phân giác tại H , cắt AB ,AC lần lượt tại E và F chứng minh .
a, BE=CF
b, AE = (AB+AC):2
c, BE=(AB-AC) :2
d, góc BME = ( góc ACB - góc B) :2
Cho tam giác ABC có AB>AC. Từ trung điiểm M của BC kẻ đường vuông phân giác góc A cắt phân giác tại H, cắt AB,AC ở E,F
C/m 1, BE=CF
2, tính AE, BE theo AB, AC
3, c/m góc BME= ( góc ACB- góc B) /2
Cho tam giác ABC có AB>AC, từ trung điểm m của BC vẽ đường thẳng vuông góc với phân giác góc A, cắt phân giác tại H, cắt AB, AC ở E và F. Chứng minh rằng:
a, BE = CF
b, AE = (AB + AC) : 2; BE = (AB - AC) : 2
c, Góc BME = (ACB - B) : 2
Đó là bài đầy đủ nhưng mình chỉ cần câu c thôi. Giúp mình Mình cũng ko cần hình vẽ đâu.
Cho tam giác ABC có AB>AC. Từ trung điểm M của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H, cắt AB, AC lần lượt tại E và F. Chứng minh:
a) EH = HF
b) 2 lần góc BME = góc ACB - góc B
c) EF2 chia 4 + AH2 = AE2
d) BE = CF
Tam giác ABC có AB >AC. Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân của góc A, cắt tia phân giác tại H, cắt AB,AC lần lượt tại E và F. CMR:
a) BE=CF
b) AE=\(\frac{AB+AC}{2}\) ; BE=\(\frac{AB-AC}{2}\)
c) \(\widehat{BME}=\frac{\widehat{ACB}-\widehat{B}}{2}\)
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:a) EF^2/4 +AH^2=AE^2b) 2BME=ACB-Bc) BE=CF