a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có
MB=MC
góc BMD=góc CME
=>ΔBDM=ΔCEM
=>BD=CE
b: Xét ΔKBC có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
c: KB=KC
mà KC<AC
nên KB<AC
a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có
MB=MC
góc BMD=góc CME
=>ΔBDM=ΔCEM
=>BD=CE
b: Xét ΔKBC có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
c: KB=KC
mà KC<AC
nên KB<AC
cho tam giác ABC có AB = 3 cm, AC = 4 cm, BC =5cm, kẻ đường trung tuyến AM. Qua. kẻ đường thẳng d vuông với AM, qua M kẻ các đường thẳng vuông góc với AB và AC chúng cắt đường thẳng d lần lượt tại D và E. CMR: a) BD// CE b) DE= BD+ CE
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của góc ABC ( D thuộc AC ) . Kẻ DM vuông góc với BC tại M
â) Cm: tam giác DAB = tam giác DMB
b) CM: BD là đường trung trực của AM
c) Gọi K là giao điểm của đường thẳng DM và AB , đường thẳng BD cắt KC tại N . CM: BN vuông góc Kc và tam giác KBC cân tại B
đ) gọi E al trunbg điểm của BC . Qua N kẻ đường thẳng song song với BC , cắt AB tại P . CM : 3 duog thằng CP , KỆ , BN đồng quy
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Qua A kẻ đường thẳng d vuông góc với AM. Qua M kẻ các đường thẳng vuông góc với AB và AC, chúng cắt d theo thứ tự D và E. Chứng minh rằng:
a) BD // CE.
b) DE = BD + CE.
cho tam giác ABC trung tuyến AM, qua A kẻ đường thẳng vuông góc AM cắt đường thẳng vuông góc BC tại P ở D, cắt đường thẳng vuông góc với BC tại C ở E. Tia EM cắt BD ở I. Gọi P và Q lần lượt là giao điểm của AC và AB với ME. CM
a) tam giác MCE=MBI
b. tam giác BIE cân
c. DE=BD vuông góc CE
d. PQ song song BC. PQ=1/2 BC
#P/S: mik đang cần gấp, nếu ai trả lời trc 2h chiều đc thì mik cảm ơn tik luôn
cho tam giác ABC trung tuyến AM qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC tại B ở D cắt đường thẳng vuông góc với BC tại C ở E tại EM cắt tia BD ở I gọi P và Q lần lượt là giao điểm của AM và của AC với ME. CMR
a) tam giác MCE=tam giác MBI
b)tam giác DIE cân
c)DE=BD+CE
d) PQ song song BC, PQ = 1/2BC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
cho tam giác ABC có góc A=90. trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM giao đường thẳng vuông góc với BC ở D , cắt đường thẳng vuông góc với BC tại E. TIA em giao DB tại I. gọi Q,P LẦN LƯỢT LÀgiao điểm của AB và AC VỚI dm và ME
A) Tam giác MCE = MBI
B) TAM GIÁC DIE CÂN
C) DE=BD+CE
D) PQ//BC và PQ=1/2BC
cho tam giác ABC có AB = AC, góc B = góc C.kẻ BD vuông góc với AC và kẻ CE vuông góc với AB.Hai đoạn thẳng BD và CE cắt nhau tại I
a) Tam giác BDC = tam giác CEB
b) So sánh góc IBE và góc ICD
c) Đường thẳng AI cắt BC tại trung điểm H. CM vuông AI vuông góc BC
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2