cho tam giác ABC có AB<AC, đường cao AH gọi K là trung điểm của AB, gọi O là trung điểm của AC trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Kẻ H vuông góc DC tại M, gọi S là trung điểm của HM và I là giao điểm của KO và AH. Tính số đo góc ISO
Cho tam giác ABC có AB<AC, đường cao AH gọi K là trung điểm của AB, gọi O là trung điểm của AC trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Kẻ H vuông góc DC tại M, gọi S là trung điểm của HM và I là giao điểm của KO và AH. Tính số đo góc ISO?
Mình cần gấp lắm ạ!!!!!!!
Cho tam giác ABC có AB<AC, đường cao AH gọi K là trung điểm của AB, gọi O là trung điểm của AC trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Kẻ H vuông góc DC tại M, gọi S là trung điểm của HM và I là giao điểm của KO và AH. Tính số đo góc ISO?
Mình cần gấp lắm ạ!!!!!!!
Cho tam giác ABC có AB < AC. Hạ đường cao AH tương ứng với đáy BC. Gọi M là trung điểm của AB, qua M lấy điểm D đối xứng với H. Kẻ Bx // AC. Trên tia Bx lấy điểm E sao cho góc DHE = 90o. Kẻ tia đối của HE cắt AC tại F. Gọi điểm I là trung điểm của EF. Hạ IK vuông góc AB. Chứng minh: IK = IE = IF
Mình cần gấp lắm, giải nhanh giúp mình. Thanks!
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc với AB ( M thuộc AB ). Kẻ HN vuông góc AC ( N thuộc AC ). Gọi I là trung điểm của HC, lấy K trên tia AI sao cho I là trung điểm của AK
a) Chứng minh AC // HK
b) Chứng minh MNCK là hình thang cân
c) MN cắt AH tại O, CO cắt AK tại D. Chứng minh AK = 3AD
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. a,chứng minh AK = MC. b, gọi O là giao điểm của AH và MN , D là giao điểm của AK và CO . từ I kẻ IE // CK(E thuộc AC). chứng minh 3 điểm H,D,E thẳng hàng
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.