a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: CD=căn AC^2+AD^2=13cm
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: CD=căn AC^2+AD^2=13cm
Bài 1 : Cho tan giác ABC cân tại A ,dường cai Ah=9cm và BC=24cm.
a)Tính độ dài AB,AC ?
b)Trên CB lấy điểm M sa cho CM=5cm ,trên CA lấy điểm Nsao cho CN=8cm.Chứng minh tam giác CMN đồng dạng với tam giác CAB
c)MN kéo dài cắt BA tại I . Chứng minh IA.IB=IM.IN
Bài 2 : Cho tam giác ABC có AB=12cm;BC=9cm;AC=10cm;trên tia đối của tia AB, AC lần lượt lấy các điểm D,E sao cho AD=5cm,AE=6cm
a)chứng minh tam giác ABC và tam giác AED đồng dạng
b)tính độ dài đoạn thẳng ED
c)gọi M là giao điểm của BE và CD chứng minh MB.ME=MC.MD
Bài 3 : cho tam giác ABC có AB=6m;BC=10cm;AC=9cm;trên tia AC lấy điểm D sao cho AD=4cm
a)chứng minh tam giác ABC và tam giác ADB đồng dạng
b)tính độ dài đoạn thẳng DB
c)Kẻ DE song song với AB (E thuộc BC ) Chứng minh BD2=BC.BE
Cho tam giác ABC có ab=9cm ac=8cm trên tia đối của tia AC lấy điểm D sao cho AD=2,4cm trên tia đối của tia AB lấy điểm E sao cho AE=2,7 cm 1:chứng minh DE//BC 2: tính DE/BC 3: chứng minh ∆ABC đồng dạng với ∆AED
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
cho tam giác ABC vuông tại A có đường cao AH. Biết AB =9cm, AC=12cm
a) tính BC và dt tam giác ABC
b)CMR: AB.AB=BH.BC
c)Tính diện tích tam giác HBA
d)Vẽ đường trung tuyến AK. Trên tia đối của tia AK lấy điểm D sao cho KD=2,5CM, trên tia đối của tia BA lấy điểm E sao cho BE=3cm. Chứng minh BC//ED
Cho tam giác ABC có AB =6cm AC = 7,5cm BC=9cm Trên tia đối của tia AB lấy D sao cho AD=AC
a) Chứng minh tam giác ABC đồng dạng tam giác CBD
b) Tính CD=?
c) Chứng minh góc BAC =2 góc ACB
Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi
1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F
Chứng minh tam giác ADE đồng dạng với tam giác BFE
2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK
Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC
3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm
So sánh AE/AC;AF/AB
4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I
Chứng minh rằng a,IA.BH = IH.BA
b,Tam giác ABC đồng dạng với tam giác HBA
5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC
Tính độ dài OC;CD
6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm
Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?
7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F
Chứng minh tam giác ADF đồng dạng với tam giác EDC
Cho tam giác ABC vuông ở A. Trên tia đối của tia AB, lấy điểm E sao cho AB= 2AE. Trên tia đối của tia AC lấy điểm F sao cho AC= 2AF. a) Chứng minh FE//BC. b) Kẻ AH vuông góc với BC tại H. Chứng minh AC2 = CH.CB c) Vẽ tia phân giác CD của góc ACB ( D thuộc AB), CD cắt AH ở I. Chứng minh IH AD IA DB . d) Cho AF= 1,5cm; AE= 2cm. Tính độ dài AH và diện tích tam giác HI
cho tam giác ABC vuông ở A; AB=48cm; AC=64cm. Trên tia đối của tia AB lấy điểm D sao cho AD=27cm; trên tia đối của tia AC lấy điểm E sao cho AE= 36cm
a) chứng minh tam giác ABC đồng dạng tam giác ADE
b) tính độ dài của đoạn BC; DE
c) chứng minh DE//BC
d) chứng minh EB vuông góc BC