Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm . Trên tia đối của ab lấy điểm D sao cho AD=1/3AB.Kẻ DH vuông góc với BC
a, chứng minh tam giác ABC đồng dạng vs HBD
b,Tính BC,HB,HD,HC
c,gọi k là giao điểm của DH và AC .Tính tỉ số diện tích của hai tam giác AKD và ABC
8. Cho tam giác ABC có AB = 6cm, AC = 8 cm. Trên tia đối của AB lấy điểm D sao cho 3AD = AB. Kẻ DH vuông góc với BC.
a. Chứng minh tam giác ABC đồng dạng với tam giác HBD
b. Tính BC, HB, HD, HC
c. Gọi K là giao điểm của DH và AC. Tính tỉ số diện tích của ΔAKD và ΔABC.
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Gọi M là trung điểm của AH.
Chứng minh: HD . AC = BD . MC
c) Chứng minh: MC vuông góc với DH
cho tam giác ABC vuông tại A có AB = 15cm, BC = 25cm . AH là đường cao của tam giác ABC .
a. chứng minh tam giác ABC đồng dạng với tam giác BCA
b. tính AC và AH
C. Gọi BF là tia phân giác của tam giác ABC , BF cắt AH tại D.
chứng minh tam giác ABD đồng dạng với tam giác CBF
d. Trên tia đối của tia AB lấy điểm E sao cho AE = 10cm . Qua E vẽ đường thằng D song song BF cắt AC tại K
chứng minh : AK*BH = AE* DH và diện tích của tam giác ABC = 3 phần 5 diện tích của tam giác EBC
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Vẽ đường cao AD của tam giác ABC. a) Chứng minh tam giác ABC vuông tại A và tam giác ABD đồng dạng tam giác CAD. b) Trên AB lấy điểm F sao cho AB = 3AF. Từ điểm D, vẽ đường thẳng vuông góc với FD tại D, đường thẳng này cắt AC tại E. Chứng minh: góc AFD = góc CED. c) Tính tỉ số:
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm .Kẻ đường phân giác BD của góc ABC (D thuộc AC ) a)Tính BC, AD, DC b)Trên BC lấy điểm E sao cho CE= 4cm. Chứng minh tam giác CED đồng dạng với tam giác CAB c)Chứng minh ED= AD
Cho tam giác ABC vuông tại A, đường phân giác BD ( D thuộc AC ). Từ D kẻ DH vuông góc với BC.
a, Tam giác BAH là tam giác gì? Vì Sao?
b, So sánh AD và DC
c, Chứng minh: DB là phân giác của góc ADH
d, Gọi K là giao điểm của AB và DH. I là trung điểm của KC. Chứng minh: 3 điểm B; I; D thẳng hàng.
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao.
a) Chứng minh: Tam giác HBA đồng dạng tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi M là trung điểm của AH.
Chứng minh: HD.AC = BD.MC
c) Chứng minh: MC vuông góc với DH
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18