b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD
b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD
Cho tam giác ABC có AB < BC. Trên tia đối của tia AB lấy điểm D sao cho BD = BC. Tia phân giác của góc ABC cắt AC & DC lần lượt tại E & F. Chứng minh:
a. Tam giác DBE = tam giác CBE
b. F là trung điểm của CD & BF vuông góc vs CD
c. Tìm điều kiện của tam giác ABC để DE vuông góc BC tại trung điểm M của BC
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC có AB=BC.Trên tia đối của tia Ab lấy điểm O sao cho BD=BC.Tia phân giác của góc ABC cắt AC và DC lần lượt tại E và F.
a)Cm:tam giác DBE=tam giác CBE
b)Cm:DF=CF
c)Từ A kẻ AH vuông góc với CD(H thuộc CD).Cm:AH//BF
d)Tam giác ABC có thêm điều kiện gì để DE vuông góc với BE?
Cho ∆ABC có AB AC < . Trên tia đối của tia AB lấy điểm D sao cho BD BC = . Tia phân giác của góc ABC cắt AC , DC tại E và F . Chứng minh: a. Chứng minh: ∆ = ∆ DBE CBE . b. Chứng minh: DF CF = . c. Từ A kẻ AH CD H CD ⊥ ∈ ( ). Chứng minh: AH // BF .
giúp mik với ạ =v=
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
Cho tam giác ABC vuông tại A có AB=9cm BC=15cm
a) Tính độ dài AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD
c) gọi E là trung điểm của cạnh CD ,BE cắt AC ở I.chứng mình DI đi qua trung điểm của cạnh AC
Cho tam giác ABC vuông tại A, có AB = 12cm, BC = 20cm
1) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
2) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Chứng minh tam giác AHC = tam giác DHC
3) Gọi E,F lần lượt là trung điểm của cạnh DC,AC. Đường thẳng DF cắt HC tại M. C/m 3 điểm A,M,E thẳng hàng
4) Vẽ tia phân giác của góc BAH cắt cạnh BH tại N. C/m tam giác ANC cân và NH < NB
Bài 9: Cho | có | Trên tia đối của tia AB lấy điểm D sao cho | Tia phân giác |
của góc ABC cắt AC và DC lần lượt tại E và F. Chứng minh: | |||
a) | b) F là trung điểm của CD và BF vuông góc với CD. |
ABC AB BC. BD BC. DBE CBE c) Tìm điều kiện của ABC để DE BC tại trung điểm M của BC.
C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD. |