a: Xét ΔADB và ΔADM có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔADB=ΔADM
b: Ta có: ΔADB=ΔADM
nên DB=DM
mà AB=AM
nên AD là đường trung trực của BM
c: Xét ΔBDN và ΔMDC có
\(\widehat{BDN}=\widehat{MDC}\)
DB=DM
\(\widehat{DBN}=\widehat{DMC}\)
Do đó: ΔBDN=ΔMDC
Suy ra: BN=MC
Ta có: AB+BN=AN
AM+MC=AC
mà AB=AM
và BN=MC
nên AN=AC
hay ΔANC cân tại A