a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{DAB}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
=>\(\widehat{EAI}=\widehat{DAI}\)
=>AI là phân giác của góc BAC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{DAB}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
=>\(\widehat{EAI}=\widehat{DAI}\)
=>AI là phân giác của góc BAC
Cho tam giác ABC cân ở A, góc A < 90◦ . Kẻ BD ⊥ AC (D ∈ AC), kẻ CE ⊥ AB (E ∈ AB). Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) AD = AE;
b) AI là tia phân giác của góc BAC.
Cho tam giác ABC có góc A < 90 độ , AB = AC. Kẻ CE vuông góc với AB(E thuộc AB). Kẻ BD vuông góc với AC( Dthuộc AC) . Gọi O là giao điểm của BD và CE. Chứng minh rằng:
a. BD = CE;
b. OE = OD và OB = OC;
c. OA là tia phân giác của góc BAC.
Chô tam giác ABC,(Góc A bé hơn 90 độ),AB=AC.Kẻ CE vuông góc AB,(E thuộc AB).Kẻ BD vuông AC,(D thuộc AC). Gọi O là giao diểm của BD là giao điểm của BD và CE cm:
a)BD=CE
b)OE=OD và OB=O
c) OA là tia phân giác BAC
(Vẽ hình)
ai giúp mình với
Cho tam giác ABC , có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB); gọi Ở là giao điểm của BD và CE. Chứng minh:
a, BD=CE
b, tam giác OEB=tam giác ODC
c, AO là tia phân giác của BAC
d,H là trung điểm của BC. Chứng minh A,O,H thẳng hàng.
Cho tam giác ABC cân tại A ( ). Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
a) Chứng minh ∆ABD = ∆ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh IB > .
Cho ABC cân tại A (góc A nhỏ hơn 900). Kẻ BD vuông góc với AC (D thuộc AC), kẻ CE vuông góc với AB (E thuộc AB). a. CMR: AD = AE b. Gọi I là giao điểm của BD và CE. CMR: AI là tia phân giác của góc A c. Tính độ dài BC biết AD = 7cm, DC = 1cm
cho tam giac ABC cân ở A, góc A nhỏ hơn 90 độ, Kẻ BD vuông góc với AC ( d thuộc AC), kẻ CE vuông góc với AB( E thuộc AB) gọi I la giao điểm của BD và CE. CMR: a,AD=AE
b,AI là tia phân giác của BAC
cho tam giác ABC cân tại , góc A<90độ. Kẻ BD vuông gócAC( D tuộc AC), kẻ CE vuông gócAB( E thuộc AB). Gọi I là giao điểm của BD và CE. CMr: a, AD=AE. b, AI là tia phân giác góc BAC
cho tam gác abc cân tại a (góc a <90 độ ). kẻ bd vuông ac (d thuộc ac) ; ce vuông ab (e thuộc ab)
a) chứng minh rằng ad= ae
b) gọi i là giao điểm của bd và ce. chứng minh ai là tia phân giác của góc a
c) chứng minh tam giác bic là tam giác cân
bài 8 : cho tam gáic ABC cân tại A ( góc A nhỏ hơn 90 độ ) . kẻ BD vuông góc với AC ( D thuộc AC ) , Kẻ CE vuông góc với AB (E thuộc AB )
a) CMR AD=AE
b) gọi I là giao điểm của BD và CE . CMR : AI là tia phân giác của góc A
c) tính độ dài BC biết AD =7 cm , DC= 1 cm