Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?
A. Δ ABC ∼ Δ DEF
B. ABCˆ = EFDˆ
C. ACBˆ = ADFˆ
D. ACBˆ = DEFˆ
Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. RSKˆ = PQMˆ
B. RSKˆ = PMQˆ
C. RSKˆ = MPQˆ
D. RSKˆ = QPMˆ
Bài 4: Chọn câu trả lời đúng?
A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF
C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF
D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
A. 17,5 B. 18
C. 18,5 D. 19
II. Bài tập tự luận
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm.
a) Chứng minh Δ ABC vuông
b) Trên BC lấy điểm D sao cho BA = BD. Từ D vẽ Dx ⊥ BC, Dx cắt AC tại H
Chứng minh Δ HBA = Δ HBD, suy ra BH là tia phân giác của ABC
c) Tia Dx cắt AB tại I. Chứng minh IH + IB > HD + BH
d) Gọi M là trung điểm IC. Chứng minh ba điểm B, H, M thẳng hàng
Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
a) Nối MN, Δ AHB đồng dạng với tam giác nào?
b) Gọi G là trọng tâm Δ ABC, chứng minh Δ AHG đồng dạng với Δ MOG?
c) Chứng minh ba điiểm M, O, G thẳng hàng?
tam giác ABC, AH⊥ BC, HM ⊥ AB, HN ⊥ AC.
a) c.m ΔAMN ~ Δ ABC.
b) BN giao CM tại I. C/m ΔMIN ~ Δ BIC
Cho Δ ABC và Δ MNP có A ^ = M ^ = 90 0 , AB/MN = BC/NP thì?
A. Δ ABC ∼ Δ PMN
B. Δ ABC ∼ Δ NMP
C. Δ ABC ∼ Δ MNP
D. Δ ABC ∼ Δ MPN
cho Δ abc vuông tại A(AC<AB) M là trug đ của AB, P là đ nằm trong Δ ABC sao cho MP vông góc vs AB .Trên tia đối cua tia MP lấy đ Q sao cho MP=MQ
a) c/m tứ giasc APBQ là hình thoi
b)qua C vẽ đường thẳng //vs BP cắt tia QP tại E .C/M tuứ giác ACEQ là hình bình hành
c)gọi N là giao đ của PE và BC +C/M AC=2MN
+Cho MN =3cm ,AN=5cm.Tính chu vi của ΔABC
Cho Δ ABC có 3 đường cao AK,BM,CN cắt nhau tại H.
a) C/m: Δ ANH ~ Δ CKH, suy ra HA.HK = HN.HC
b) Δ HNK ~ Δ HAC và CN là phân giác của góc MNK
c) C/m: \(\dfrac{HK}{AK}+\dfrac{HM}{BM}+\dfrac{HN}{CN}=1\)
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc vói BC tại H. Gọi E và F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh AH2 - AE.AB.
b) Chứng minh Δ A F E ~ Δ A B C ;
c) Lấy M đối xứng với A qua E, tia MH cắt cạnh AC tại N. Chứng minh A B H ^ = A N H ^ và EF//HN.
d) Gọi O là trung điểm của BC; AO giao với HN tại K. Cho biết A C B ^ = 30 ° , hãy tính tỉ số A K A N S H C A