Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 1800 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 1800 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 900
=> góc MAD + góc ADE = 900. Suy ra MA vuông góc với DE
+) Lấy N đối xứng với A qua M
Tam giác AMC = tam giác NMB ( AM = MN; góc AMC = NMB ; MC = MB)
=> góc MBN = ACM => góc ABN = ABM + MBN = ABM + ACM = 180o - BAC
Mặt khác, vì DAB = EAC = 90o nên góc DAE = 180o - BAC
=> góc ABN = DAE
kết hợp với AD = AB; AN = AE (- AC) => tam giác ADE = ABN (c - g - c)
=> góc ADE = BAM ( 2 góc tương ứng)
Có góc AKD = 180o - (ADE + DAK) = 180o - (BAM + DAK) = 180o - 90o = 90o
=> AK | DE
Vậy...
wao! tran thi loan lam hay waaa! tỉ nhe! thank you very mút!